

3RD SPECIAL MATHS CONTEST

2024 Edition: Second/Final Round

Solutions and Marking Scheme

Instructions for Marking

- Every Problem is worth 7 points.
- Full solutions regardless of method is worth 7 points. 1 point may be deducted for fundamental error and 2 points for a more serious error which can be rectified without much trouble.
- Random attempts not in line with scheme are worth at most 1 point unless it can be shown to lead to a potential solution.
- Any substantial or insightful partial solution outside the scheme will be discussed by team in more details.
- Alternative approach under each point breakdown will receive appropriate points corresponding to progress made.

1 Combinatorics

1.1 Problem

Problem 1: A company has n + 1 men and n women. In order to form a committee that consists of more men than women from this company, how many ways can this be done? Give your answer in a closed form.

Key Idea: Can be expressed as summation involving combinations. There is a hidden symmetry to be exploited.

1.2 Solutions

Solution 1:

Let x denote the number of ways of forming a committee that consists of more men than

women from this company. Let y denote the number of ways of forming a committee that consists of less or equal number of men than women from this company (including the empty set).

Then x + y is the total number of possible committee. So $x + y = 2^{2n+1}$ since there are 2n + 1 people in total.

Next we show x = y. Consider the compliment committee made by remaining members. A committee is counted as part of x if and only if its compliment is counted as part of y. So we get a bijection and conclude that x = y.

Thus, $2x = 2^{2n+1} \implies x = 2^{2n} = 4^n$.

Solution 2:

Let x, y be same as before. Then

$$x = \sum_{i=0}^{n+1} \left(\begin{array}{c} n+1\\i \end{array} \right) \sum_{k=0}^{i-1} \left(\begin{array}{c} n\\k \end{array} \right), y = \sum_{i=0}^{n+1} \left(\begin{array}{c} n+1\\i \end{array} \right) \sum_{k=i}^{n} \left(\begin{array}{c} n\\k \end{array} \right).$$

Indeed, $x + y = \sum_{i=0}^{n+1} \binom{n+1}{i} \sum_{k=0}^{n} \binom{n}{k} = \sum_{i=0}^{n+1} \binom{n+1}{i} 2^n = 2^{n+1} \cdot 2^n = 2^{2n+1}$. Now,

$$y = \sum_{i=0}^{n+1} \binom{n+1}{i} \sum_{k=i}^{n} \binom{n}{k}$$
$$= \sum_{i=0}^{n+1} \binom{n+1}{i} \sum_{l=0}^{n-i} \binom{n}{n-l}$$
$$= \sum_{j=0}^{n+1} \binom{n+1}{n+1-j} \sum_{l=0}^{j-1} \binom{n}{n-l}$$
$$= \sum_{j=0}^{n+1} \binom{n+1}{j} \sum_{l=0}^{j-1} \binom{n}{l}$$
$$= x.$$

The rest follows as in solution 1.

Solution 3:

Let x be same as before. Then

$$x = \sum_{i=0}^{n+1} \binom{n+1}{i} \sum_{k=0}^{i-1} \binom{n}{k}$$
$$= \sum_{i=0}^{n} \binom{n}{i} \sum_{k=0}^{i-1} \binom{n}{k} + \sum_{i=1}^{n+1} \binom{n}{i-1} \sum_{k=0}^{i-1} \binom{n}{k}$$

Quite Easily Done? Hopefully!

$$=\sum_{i=0}^{n} \binom{n}{i} \sum_{l=n+1-i}^{n} \binom{n}{n-l} + \sum_{j=0}^{n} \binom{n}{n-j} \sum_{k=0}^{n-j} \binom{n}{k}$$
$$=\sum_{i=0}^{n} \binom{n}{i} \sum_{l=n+1-i}^{n} \binom{n}{l} + \sum_{j=0}^{n} \binom{n}{j} \sum_{k=0}^{n-j} \binom{n}{k}$$
$$=\sum_{i=0}^{n} \binom{n}{i} \sum_{k=n+1-i}^{n} \binom{n}{k} + \sum_{i=0}^{n} \binom{n}{i} \sum_{k=0}^{n-i} \binom{n}{k}$$
$$=\sum_{i=0}^{n} \binom{n}{i} \sum_{k=0}^{n} \binom{n}{k}$$
$$=2^{n} \cdot 2^{n} = 4^{n}.$$

1.3 Marking scheme

Type 1: Based on solution 1

- [1 Point] Consider y (well described).
- [2 Points] Deducing $x + y = 2^{2n+1}$.
- [3 Points] Showing x = y. This may include considering the compliment committee (and the associated number x') and use of bijection twice to get x = x' = y.
- [1 Point] Finalizing to get $x = 4^n$.

Type 2: Based on solutions 2 and 3

- [2 Points] Translating x into the right summation.
- [5 Points] Simplifying the sum:
 - [1 Point] Splitting the sum or taking compliment.
 - [1 Point] Substituting the summation *i* appropriately.
 - [1 Point] Substituting the summation k appropriately.

- [1 Point] Applying
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

- [1 Point] Using the symmetry hidden in
$$\binom{n}{k} = \binom{n}{n-k}$$
.

2 Geometry

2.1 Problem

Problem 2: Let ABCD be a convex quadrilateral with $B\hat{C}D = 90^{\circ}$ and $B\hat{A}D = B\hat{D}A$. Suppose E lies on line segment AC such that $D\hat{A}E = C\hat{D}E$ and |BC| = |AE|. Find the measure of $A\hat{C}B$.

Key Idea: Application of various basic theorems involving length.

2.2 Solutions

Solution 1:

By scaling, let |CE| = 1, |CD| = t. Then $D\hat{A}E = C\hat{D}E \implies \triangle CAD \sim \triangle CDE$. Thus, $\frac{|AC|}{|CD|} = \frac{|DC|}{|CE|} \implies |AC| = t^2 \implies |AE| = t^2 - 1 > 0.$

Next, $|BC| = |AE| \implies |BC| = t^2 - 1$. So, $B\hat{C}D = 90^\circ \implies |BD|^2 = |BC|^2 + |CD|^2 = (t^2 - 1)^2 + t^2 = t^4 - t^2 + 1$. Now, from $B\hat{A}D = B\hat{D}A$, have |AB| = |BD|, so $|AB|^2 = t^4 - t^2 + 1$ also. Finally, $\cos(A\hat{C}B) = \frac{|AC|^2 + |BC|^2 - |AB|^2}{2|AC| \cdot |BC|} = \frac{t^4 + (t^2 - 1)^2 - (t^4 - t^2 + 1)}{2t^2 \cdot (t^2 - 1)} = \frac{1}{2}$. We conclude that $A\hat{C}B = 60^\circ$.

Solution 2:

Let F be on opposite side of BC to A such that $\triangle ABC \equiv \triangle DBF$ with same orientation. Let G be on segment DF such that |DG| = |EC|, |GF| = |AE| = |BC| = |BF|.

So, CD is tangent to the circumcircle of $\triangle CFG$ whose centre then lies on BC and the perpendicular bisector of CF. We conclude that B is that centre.

Consequently, |BG| = |BF| = |GF| so that $\hat{ACB} = D\hat{F}B = 60^{\circ}$.

2.3 Marking scheme

Type 1: Based on solution 1. (Deducing lengths).

- [2 Points] |*AC*|.
- [1 Point] |*BC*|.
- [1 Point] |*BD*|.
- [1 Point] |*AB*|.

• [2 Points] Using cosine rule to get final answer.

Type 2: Based on solution 2. (construction)

- [1 Point] Construction of *F*.
- [1 Point] Construction of G.
- [1 Point] Deducing $\triangle CAD \sim \triangle CDE$.
- [2 Points] Deducing $C\hat{F}G = D\hat{C}G$.
- [1 Point] Deducing B is center of $\triangle CFG$.
- [1 Point] Deducing $\triangle BFG$ is equilateral.

3 Algebra

3.1 Problem

Problem 3: Consider three sequences of real numbers $(x_n)_{n\geq 0}$, $(y_n)_{n\geq 0}$ and $(z_n)_{n\geq 0}$ satisfying the following for $k \geq 0$:

$$\begin{aligned} x_{k+1} &= (y_k + z_k)^2 - x_k^2, \\ y_{k+1} &= (z_k + x_k)^2 - y_k^2, \\ z_{k+1} &= (x_k + y_k)^2 - z_k^2. \end{aligned}$$

Can any two of the sequences be periodic given that $x_0 \neq y_0, y_0 \neq z_0, z_0 \neq x_0$?

Key Idea: Exploit symmetry and consider growth rate as opposed to bounded-ness of periodic sequences.

3.2 Solutions

Solution 1:

Let $s_n = x_n + y_n + z_n$. Then $s_{k+1} = s_k^2$, $k \ge 0$. So, $s_n = s_0^{2^n}$. Suppose $s_0 = 0$, then have $s_k = 0 \implies x_{k+1} = y_{k+1} = z_{k+1} = 0$. This is a contradiction, therefore we conclude that $s_0 \ne 0$.

Now
$$x_{k+1} - y_{k+1} = (y_k + z_k)^2 - (z_k + x_k)^2 - x_k^2 + y_k^2 = (y_k - x_k)[x_k + y_k + 2z_k] + (y_k - x_k)[x_k + y_k] = 2s_k(y_k - x_k).$$

Thus, $\frac{x_{k+1}-y_{k+1}}{s_{k+1}} = (-2)\left[\frac{x_k-y_k}{s_k}\right]$. Inductively, have $\frac{x_n-y_n}{s_n} = (-2)^n \left[\frac{x_0-y_0}{s_0}\right]$.

Finally, $x_n - y_n = (-2)^n s_0^{2^n - 1} (x_0 - y_0) \neq 0$. Similarly, $y_n - z_n = (-2)^n s_0^{2^n - 1} (y_0 - z_0) \neq 0$ and $z_n - x_n = (-2)^n s_0^{2^n - 1} (z_0 - x_0) \neq 0$.

Quite Easily Done? Hopefully!

Therefore suppose any two sequences are periodic, say x_n periodic with period $M \ge 1$ and y_n periodic with period $N \ge 1$. Then both x_n and y_n have period $T = MN \ge 1$. This implies $x_n - y_n$ is also periodic with period T.

So $(-2)^{kT} s_0^{2^{kT}-1}(x_0 - y_0) = x_0 - y_0, k \ge 1 \implies (-2)^T s_0^{2^T-1} = 1 \implies (-2)^{kT} s_0^{k(2^T-1)} = 1 \implies s_0^{k(2^T-1)} = s_0^{2^{kT}-1}$. In particular, $s_0^{2(2^T-1)} = s_0^{2^{2T}-1} \implies s_0^{(2^T-1)^2} = 1 \implies s_0 = 1$ or $2^T - 1 = 0$. So must have $s_0 = 1$. Next, recall $(-2)^{kT} s_0^{2^{kT}-1}(x_0 - y_0) = x_0 - y_0, k \ge 1$, so $(-2)^{kT} = 1, k \ge 1$. This is a contradiction.

Hence, at most one of the sequence is periodic.

On further note: Have $x_n = (-2)^n s_0^{2^n - 1} x_0 + w_n, y_n = (-2)^n s_0^{2^n - 1} y_0 + w_n, z_n = (-2)^n s_0^{2^n - 1} z_0 + w_n \implies s_0^{2^n} = s_n = x_n + y_n + z_n = (-2)^n s_0^{2^n} + 3w_n \implies w_n = s_0^{2^n} [\frac{1 - (-2)^n}{3}].$

Thus,

$$x_n = (x_0 + y_0 + z_0)^{2^n - 1} \left[x_0 \left(\frac{1 - (-2)^{n+1}}{3} \right) + (y_0 + z_0) \left(\frac{1 - (-2)^n}{3} \right) \right].$$

Solution 2:

Suppose not. Let $s_n = x_n + y_n + z_n$ as before.

Similar to solution 1, may assume x_n and y_n are both periodic with period N. It follows that if $z_{k+mN} = z_{k+m'N}$ for some $k \ge 0, m > m' \ge 0$, then z_n is eventually periodic with period (m - m')N since the triple (x_n, y_n, z_n) is defined inductively.

Indeed, $x_{mN+1} = (y_{mN} + z_{mN})^2 - x_{mN}^2 \implies x_1 = (y_0 + z_{mN})^2 - x_0^2$. So there are two possible values for z_{mN} . Thus, two of z_0, z_N and z_{2N} are equal by pigeonhole principle. We conclude that z_n is eventually periodic with period 2N. Consequently, $s_n = s_0^{2^n}$ is also eventually periodic. So, $s_0 = \pm 1$ and $s_n = 1, n \ge 1$.

Thus, $x_{k+1} = 1 - 2x_k$, $y_{k+1} = 1 - 2y_k$, $z_{k+1} = 1 - 2z_k$, $k \ge 1$. Have $3x_{k+1} - 1 = -2(3x_k - 1) \implies 3x_n - 1 = (-2)^{n-1}(3x_1 - 1)$ is periodic. So $x_n = 1/3$, $n \ge 1$ and similarly $y_n = 1/3$, $n \ge 1$. This is a contradiction.

3.3 Marking scheme

- [2 Points] Introducing and deducing a closed form for s_n .
- [1 Point] Show $s_0 \neq 0$.

Proof by contradiction [Assume x_n and y_n are periodic]: **Type 1:** Based on x_n and y_n only.

• [1 Point] Deducing $\frac{x_n - y_n}{s_n}$ is exponential.

- [1 Point] Observing $x_n y_n$ is periodic (and hence bounded).
- [2 Points] Completing the rest of the proof.

Type 2: Involving z_n .

- [2 Points] Deducing z_n is eventually periodic.
- [1 Point] Deducing $s_n = 1$ for large values of n.
- [1 Point] Finding x_n and concluding.

4 Number Theory

4.1 Problem

Problem 4: Let $(a_n)_{n\geq 0}$ be a sequence of rational numbers satisfying $a_{n+2}a_n^2 + a_{n+1}^3 = 4^n a_{n+1}a_n^4$ for $n \geq 0$. Suppose $a_0 = 1$ and $a_1 \neq 0$ is an integer. Show that $(1 + a_1^2)^{2^n} - 4^n a_n^2$ is the square of an integer for all $n \geq 0$.

Key Idea: Inductive application of Pythagorean triples.

4.2 Solutions

Solution 1:

Let $b_n := \frac{a_{n+1}}{a_n}$. Then $a_{n+2}a_n^2 + a_{n+1}^3 = 4^n a_{n+1}a_n^4 \implies \frac{a_{n+2}}{a_{n+1}} + [\frac{a_{n+1}}{a_n}]^2 = 4^n a_n^2 \implies b_{n+1} = 4^n a_n^2 - b_n^2$, $a_{n+1} = a_n b_n$. Since $a_0 = 1$, $b_0 = a_1$ are integers, it follows inductively that a_n and b_n are both integers.

Now let $c_n = 4^n a_n^2 + b_n^2$. Then, $c_{n+1} = 4^{n+1} a_{n+1}^2 + b_{n+1}^2 = 4^{n+1} a_n^2 b_n^2 + (4^n a_n^2 - b_n^2)^2 = (4^n a_n^2 + b_n^2)^2 = c_n^2$. Inductively, have $c_n = c_0^{2^n} = (a_0^2 + b_0^2)^{2^n} = (1 + a_1^2)^{2^n}$.

Hence, $(1 + a_1^2)^{2^n} - 4^n a_n^2 = b_n^2$ is the square of an integer for all $n \ge 0$.

Solution 2:

Observe that
$$\frac{a_{n+2}^2}{a_{n+1}^2} = \left[4^n a_n^2 - \frac{a_{n+1}^2}{a_n^2}\right]^2 = \left[4^n a_n^2 + \frac{a_{n+1}^2}{a_n^2}\right]^2 - 4^{n+1} a_{n+1}^2$$
, so $4^{n+1} a_{n+1}^2 + \frac{a_{n+2}^2}{a_{n+1}^2} = \left[4^n a_n^2 + \frac{a_{n+1}^2}{a_n^2}\right]^2$.
Thus, inductively, here $4^n a_n^2 + \frac{a_{n+1}^2}{a_n^2} = \left[a_n^2 + \frac{a_n^2}{a_n^2}\right]^{2^n} - \left[a_n^2 + 1\right]^{2^n}$.

Thus, inductively, have $4^n a_n^2 + \frac{a_{n+1}^2}{a_n^2} = \left[a_0^2 + \frac{a_1^2}{a_0^2}\right]^{2^n} = \left[a_1^2 + 1\right]^{2^n}$.

Finally, if a_n, a_{n+1} are integers with $a_n|a_{n+1}$, then from $\frac{a_{n+2}}{a_{n+1}} = 4^n a_n^2 - \frac{a_{n+1}^2}{a_n^2}$, have a_{n+1}, a_{n+2} are integers with $a_{n+1}|a_{n+2}$. So inductively, $[a_1^2 + 1]^{2^n} - 4^n a_n^2 = \frac{a_{n+1}^2}{a_n^2}$ is a perfect square since a_0, a_1 are integers with $a_0|a_1$.

4.3 Marking scheme

- [3 Points] Show a_n is always an integer with $a_n|a_{n+1}$. This needs to be shown simultaneously in case of induction.
- [2 Points] Manipulating the recurrence equation in a way that leads to something inductive.
- [1 Point] Properly applying induction.
- [1 Point] Deducing the expression in question is equal to the square of $\frac{a_{n+1}}{a_n}$.