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Special Maths Contest

1 Problems

Problem 1:

Let n ∈ N. Prove that
1

n

n∑
i=1

1
√
xi +

√
yi

≥
√
n√∑n

i=1 xi +
√∑n

i=1 yi

∀xi, yi ∈ R+, i = 1, 2, · · · , n.

Problem 2:

Find all triples of prime numbers (p, q, r), such that q|r − 1, and

r
(
pq−1 − 1

)
qp−1 − 1

is prime.

Problem 3:

The numbers 2, 3, 4, · · · , 100 are written on a board. Chibuike and Ismail play a game of erasing
numbers from the board using the following rule: If the number, a, is erased, then only numbers,
b, such that gcd(a, b) = 1, can be erased in subsequent turns.
The game ends when no such b exists, to be erased, and the person that erased last wins.

If Chibuike starts the game, does there exist a winning strategy for him? (Determine with proof.)

Problem 4:
Let Ω be a circle with center O with P , a point lying outside. Tangents from P are drawn to touch
the circle at A and B. A point, T is arbitrary chosen on major arc AB, and D is the foot of T on
AB. K,L,M,N are the mid points of TA, TB, TD,AB respectively. PT intersects MN at point
S. Lines la and lb are the reflection of OA and OB over the angle bisectors of ∠SAL and ∠SBK,
respectively. Show that la, lb and TD are concurrent.
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2 Solutions

Problem 1:

Let n ∈ N. Prove that
1

n

n∑
i=1

1
√
xi +

√
yi

≥
√
n√∑n

i=1 xi +
√∑n

i=1 yi

∀xi, yi ∈ R+, i = 1, 2, · · · , n.

Solution 1

Let AM(ai), HM(ai), QM(ai) denote the arithmetic mean, the harmonic mean, and the quadratic
mean respectively, of a1, a2, · · · , an ∈ R+. Then it follows that QM(ai) ≥ AM(ai) ≥ HM(ai) > 0.

Thus,

1

n

n∑
i=1

1
√
xi +

√
yi

= AM

(
1

√
xi +

√
yi

)

≥ HM

(
1

√
xi +

√
yi

)
=

1

AM
(√

xi +
√
yi
) =

1

AM
(√

xi
)
+AM

(√
yi
)

≥ 1

QM
(√

xi
)
+QM

(√
yi
) =

1√
AM (xi) +

√
AM (yi)

=

√
n√∑n

i=1 xi +
√∑n

i=1 yi
.

Solution 2 (Induction)

CLAIM: Let α ∈ [0, 1] and let x, y,X, Y ∈ R+. Then

α√
X +

√
Y

+
1− α√
x+

√
y
≥ 1√

αX + (1− α)x+
√
αY + (1− α)y

.

Proof 1 of claim:
Fix x, y,X, Y ∈ R+ and consider the function in α:

F (α) = f(α)− 1

g(α)
,

where

f(α) =

(
α√

X +
√
Y

+
1− α√
x+

√
y

)
, g(α) =

√
αX + (1− α)x+

√
αY + (1− α)y.

Observe that F (0) = F (1) = 0, so it is enough to show that F is concave.
First observe that f is linear and g is concave since

g′′(α) = − (X − x)2

4
√

αX + (1− α)x
3 − (Y − y)2

4
√
αY + (1− α)y

3 ≤ 0.
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Indeed,

F ′(α) = f ′(α) +
g′(α)

g(α)2
=⇒ F ′′(α) = 0 +

g′′(α)

g(α)2
− 2g′(α)2

g(α)3
≤ 0.

Proof 2 of claim:
Let h : R2

+ −→ R+ be given by

h(x, y) :=
1√

x+
√
y
.

This can be viewed as a surface in 3D.
Then the claim can be written as

αh(X,Y ) + (1− α)h(x, y) ≥ h [αX + (1− α)x, αY + (1− α]y) = h [α(X,Y ) + (1− α)(x, y)] .

That is, h is convex by Jensen’s inequality. This equivalent to checking that the Hessian of h is
positive definite.
The Hessian is given by

H(h) =

(
hxx hxy
hyx hyy

)
.

I leave the rest of the working to the reader.

Now, we are ready to proceed via induction on n.

� n = 1: This is trivial as we have equality.

� n = 2: RTP:
1

2

(
1

√
x1 +

√
y1

+
1

√
x2 +

√
y2

)
≥

√
2√

x1 + x2 +
√
y1 + y2

.

To see this, take α = 1
2 , X = x1, Y = y1, x = x2, y = y2 in claim.

� Assume true for n = k, some k ≥ 2:

S =
1

k

k∑
i=1

1
√
xi +

√
yi

≥
√
k√∑k

i=1 xi +
√∑k

i=1 yi

� Show for n = k + 1: RTP

1

k + 1

k+1∑
i=1

1
√
xi +

√
yi

≥
√
k + 1√∑k+1

i=1 xi +
√∑k+1

i=1 yi

.

Now let x = xk+1, y = yk+1, and

X =
1

k

k∑
i=1

xi, Y =
1

k

k∑
i=1

yi.

So,

LHS =
1

k + 1

k+1∑
i=1

1
√
xi +

√
yi

=
1

k + 1

(
kS +

1√
x+

√
y

)
≥ 1

k + 1

(
k√

X +
√
Y

+
1√

x+
√
y

)
,
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≥
√
k + 1√

kX + x+
√
kY + y

= RHS.

The first inequality follows from assume step, while the last inequality follows by taking
α = k

k+1 in claim.

Solution 3 (Partly induction)

CLAIM: Let x, y,X, Y ∈ R+. Then

1√
X +

√
Y

+
1√

x+
√
y
≥ 2

√
2√

X + x+
√
Y + y

.

Proof 1 of claim:
Apply claim as in solution 2.

Proof 2 of claim:
Let X = a2, Y = b2, x = c2, y = d2. Then claim becomes

1

a+ b
+

1

c+ d
≥ 2

√
2√

a2 + c2 +
√
b2 + d2

⇐⇒
√
a2 + c2 +

√
b2 + d2 ≥ 2

√
2(a+ b)(c+ d)

a+ b+ c+ d
.

Indeed, √
a2 + c2 +

√
b2 + d2 ≥ a+ c+ b+ d√

2
≥ 2

√
2(a+ b)(c+ d)

a+ b+ c+ d
,

The first in equality follows from QM-AM, while the second follows from AM-GM (after cross
multiplication) or AM-HM (indirectly).

First, we prove the problem for n = 2m, some m ∈ N0, by induction on m.

� m = 0: This is trivial as we have equality.

� m = 1: RTP:
1

2

(
1

√
x1 +

√
y1

+
1

√
x2 +

√
y2

)
≥

√
2√

x1 + x2 +
√
y1 + y2

.

This is exactly the same as claim.

� Assume true for m = k, some k ≥ 1:

1

2k

2k∑
i=1

1
√
xi +

√
yi

≥
√
2k√∑2k

i=1 xi +

√∑2k

i=1 yi

� Show for m = k + 1: RTP

1

2k+1

2k+1∑
i=1

1
√
xi +

√
yi

≥
√
2k+1√∑2k+1

i=1 xi +

√∑2k+1

i=1 yi

.
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Indeed,

1

2k+1

2k+1∑
i=1

1
√
xi +

√
yi

=
1

2

 1

2k

2k∑
i=1

1
√
xi +

√
yi

+
1

2k

2k∑
i=1

1
√
xi+2k +

√
yi+2k


≥ 1

2


√
2k√∑2k

i=1 xi +

√∑2k

i=1 yi

+

√
2k√∑2k

i=1 xi+2k +

√∑2k

i=1 yi+2k


=

1

2


1√∑2k

i=1 xi

2k
+

√∑2k

i=1 yi
2k

+
1√∑2k

i=1 xi+2k

2k
+

√∑2k

i=1 yi+2k

2k


≥

√
2√∑2k

i=1 xi

2k
+

∑2k

i=1 xi+2k

2k
+

√∑2k

i=1 yi
2k

+
∑2k

i=1 yi+2k

2k

=

√
2k+1√∑2k+1

i=1 xi +

√∑2k+1

i=1 yi

.

The first inequality follows from assume step, while the last inequality follows from claim.

Next, we prove for general n ̸= 2m. We may assume n < 2m, some m > 1. More specifically, we
shall show that if the problem holds for some n = k > 3, then it also holds for n = k− 1. This is a
finite downward induction.

The construction is quite straight forward. To prove for n = k − 1, apply the case n = k by
taking xi for i = 1, 2, · · · k − 1 as before, then take xk as their arithmetic mean (same goes for yi).
The rest is easy deduction.
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Problem 2:

Find all triples of prime numbers (p, q, r), such that q|r − 1, and

r
(
pq−1 − 1

)
qp−1 − 1

is prime.

Solution

Let
r
(
pq−1 − 1

)
qp−1 − 1

= s,

then
r
(
pq−1 − 1

)
= s

(
qp−1 − 1

)
.

Note that

r = s ⇐⇒ pq−1 − 1 = qp−1 − 1 ⇐⇒ pq−1 = qp−1 ⇐⇒ p
1

p−1 = q
1

q−1 ⇐⇒ p = q.

To see the final step, take ln and consider the function f(x) = ln(x)
x−1 . Then f ′(x) = x−1−x ln(x)

x(x−1)2
< 0

for x > 1, since x ln(x) + 1− x =
∫ x
1 ln(t) dt.

In this case, need q|r − 1. Thus we get solution (q, q, r), where r is an odd prime and q is a
prime divisor of r − 1.

Suppose r ̸= s, then p ̸= q. Thus by FLT, have

p|
(
qp−1 − 1

)
=⇒ p|r

(
pq−1 − 1

)
=⇒ p|r,

q|
(
pq−1 − 1

)
=⇒ q|s

(
qp−1 − 1

)
=⇒ q|s.

Therefore, p = r, q = s.
Need pq − p = qp − q and q|p− 1.
Consider the function g(x) = qx − q − xq + x.
Have g(q) = 0 and g′(x) = qx ln(q) − qxq−1 + 1 > q[qx−1 − xq−1] > 0 for x > q ≥ 3. That is, g is
strictly increasing (and hence positive) in the interval (q,+∞), when q ≥ 3.
However, g(p) = 0, p > q. Thus, q = 2.

Now for q = 2, have g(4) = 2 and g′(x) = 2x ln(2)− 2x+1 > 2x−1 − 2x =
∫ x
4 [2

t−1 ln(2)− 2] dt ≥ 0
for x ≥ 4. That is, g is strictly increasing (and hence positive) in the interval [4,+∞).
Again, g(p) = 0, p ≥ 3, so we conclude that p = 3.
Therefore, p = r = 3, q = 2.

Note 1:
The first inequality may be avoided by taking the two cases: p = q and p ̸= q, as opposed to taking
cases r = s and r ̸= s as in the proof above.
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Note 2:
Since the domains can be restricted to positive integers, the above inequalities can also be shown
using induction or standard inequality. The induction approach is standard, so I will only present
the standard inequality application in the case of pq − p = qp − q, q|p− 1:

If q ≥ 3.

Then pq > pq − p = qp − q > qp−1. Thus p > q
p−1
q . (This still holds in the case of pq−1 = qp−1.)

q|p− 1 =⇒ p = 2qk + 1, for some k ≥ 1.
So 2kq + 1 = p > q2k =⇒ 2k ≥ q2k−1 ≥ 1 + (q − 1)

(
q2k−2 + q2k−2 + · · ·+ q + 1

)
≥ 1 + 2(2k − 1).

This is a contradiction.

If q = 2. (Then p ≥ 3.)
First, n ≥ 1 =⇒ 2n = 2

(
1 + 1 + 2 + 4 + · · ·+ 2n−3 + 2n−2

)
≥ 2n.

Hence,

p

(
p− 1

2

)
= 2p−1 − 1 =

(
2

p−1
2 + 1

)(
2

p−1
2 − 1

)
≥

(
2

(
p− 1

2

)
+ 1

)(
2

(
p− 1

2

)
− 1

)
= p(p− 2).

So, p = 3.
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Problem 3:

The numbers 2, 3, 4, · · · , 100 are written on a board. Chibuike and Ismail play a game of erasing
numbers from the board using the following rule: If the number, a, is erased, then only numbers,
b, such that gcd(a, b) = 1, can be erased in subsequent turns.
The game ends when no such b exists, to be erased, and the person that erased last wins.

If Chibuike starts the game, does there exist a winning strategy for him? (Determine with proof.)

Solution

Chibuike (the first player) has a wining strategy as follows:

First note that every pair of numbers erased will be coprime. Let S denote the set of these
numbers and let p denote a prime. This implies that

� If a ∈ S and p|a, then p < 100. There are exactly 25 such primes.

� If p < 100, then there exists exactly one a ∈ S such that p|a.

� If a ∈ S, then there are at most 3 primes satisfying p|a. Moreover, they form one of the sets
{2, 3, 11} , {2, 3, 13}, or a subset of {2, 3, 5, 7}. Thus only one such number can belong to S.

� If a ∈ S has exactly 2 prime divisors, then each must have a divisor from the set {2, 3, 5, 7}.
Thus, there are at most 4 such numbers.

� If a ∈ S has 3 prime divisors, then there is at most one other element of S with more than
one prime divisor, except in the special cases when
S = {66, 91, 85, · · · } , {66, 91, 85, · · · } , {66, 91, 95, · · · } , {78, 77, 85, · · · }, or {78, 77, 95, · · · }.

� If p > 50, then p ∈ S.

In what follows, we present a simple strategy:
To begin the game, Chibuike erases 14 = 2 · 7.

� If Ismail erases 3a, then Chibuike will erase 55.

� If Ismail erases 5a, then Chibuike will erase 33.

� If Ismail erases 3a5b, then Chibuike will erase 11.

� If Ismail erases 3ap, where p > 10 is prime, then Chibuike will erase 5.

� If Ismail erases 5p, where p > 10 is prime, then Chibuike will erase 3.

� If Ismail erases p > 10, the Chibuike will erase 15.

After this, no player can erase a number that is a multiple of 2, 3, 5 or 7, so it must be prime greater
than 10.

Since 5 primes have been used up so far, the remaining 20 primes ensures that Chibuike erases
the last prime.
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Note that in the strategy above, the role of 2 and 3 can be swapped. Same goes for 5 and 7,
and also for 11 and 13.

9
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Problem 4:
Let Ω be a circle with center O with P , a point lying outside. Tangents from P are drawn to touch
the circle at A and B. A point, T is arbitrary chosen on major arc AB, and D is the foot of T on
AB. K,L,M,N are the mid points of TA, TB, TD,AB respectively. PT intersects MN at point
S. Lines la and lb are the reflection of OA and OB over the angle bisectors of ∠SAL and ∠SBK,
respectively. Show that la, lb and TD are concurrent.

Solution 1

CLAIM: BS is the reflection of BK on the angle bisector of ∠ABT , which in turn is equal to
the angle bisector of ∠SBK. Similarly, AS is the reflection of AL on the angle bisector of ∠BAT ,
which in turn is equal to the angle bisector of ∠SAL.

Proof. Let P ′ be the reflection of P on AB. Then PP ′ is parallel to TD, N is midpoint of PP ′,
M is midpoint of TD, PST is collinear, and NSM is collinear. Thus, by homothethy, have P ′SD
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is also collinear and DS
SP ′ =

DT
PP ′ .

Now, let K ′ be the point of intersection of BS and AP ′. We shall show that K′A
AB = KT

TB . Since
∠K ′AB = ∠PAB = ∠KTB, it will follow from side S-A-S criteria that ∆K ′AB and ∆KTB are
similar, so that ∠ABS = ∠K ′BA = ∠KBT as desired.

Indeed, Menalaus’s theorem applied to line BSK ′ in ∆P ′AD gives

1 =
AB

BD
· DS

SP ′ ·
P ′K ′

K ′A
=

AB

BD
· DT

PP ′ ·
P ′K ′

K ′A
=

2AN

BD
· DT

2PN
· P

′A−K ′A

K ′A

=⇒ 1 =
AN

PN
· DT

BD
· PA−K ′A

K ′A
=

tan(∠ABT )

tan(∠BAP )
· PA−K ′A

K ′A

=⇒ 1 =
AN sin(∠ABT )−K ′A sin(∠ABT ) cos(∠BAP )

K ′A sin(∠BAP ) cos(∠ABT )

=⇒ K ′A sin(∠BAP + ∠ABT ) =
1

2
AB sin(∠ABT )

=⇒ K ′A

AB
=

1
2 sin(∠ABT )

sin(∠BAT )
=

KT

TB
.

Using the claim, we have that la and lb are the reflection of OA and OB over the angle bisectors
of ∠BAT and ∠ABT , respectively. This implies that la and lb are the altitudes of ∆ABT from A
and B respectively. The third altitude is TD so it follows that la, lb and TD are concurrent.

Solution 2

Lemma 1:
In a triangle ABC with D,E, F midpoints of sides BC,CA and AB respectively, let J,K,L be
points on EF,FD and DE respectively, such that AJ ⊥ EF,BK ⊥ FD and CL ⊥ DE.

(i) DJ,EK and FL are concurrent.

(ii) Suppose the point of concurrency in (i) is X, then AX is the A-symmedian in triangle ABC.
Furthermore, this will imply that X is the concurrency point of the symmedians in triangle
ABC since B or C can take the place of A. Hence, we have 6 concurrent lines. (Symmedian
is the reflection of the median over the angle bisector of the respective angle)

Proof:
D,E, F are the midpoints of sides BC,CA and AB respectively, hence we have EF ∥ BC,FD ∥
CA,DE ∥ AB. Let AJ intersect BC at P,BK intersect CA at Q and CL intersect AB at R. Since
AJ ⊥ EF,BK ⊥ FD and CL ⊥ DE, we have that AP ⊥ BC,BQ ⊥ CA and CR ⊥ AB (They
are altitudes in triangle ABC). It is well known that the altitudes of a triangle are concurrent,
therefore, AP,BQ and CR are concurrent, hence by Ceva’s theorem, we have that

|AR|
|RB|

· |BP |
|PC|

· |CQ|
|QA|

= 1.
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Also, from EF ∥ BC,FD ∥ CA,DE ∥ AB, we have the following ratio equalities:

|BP |
|PC|

=
|FJ |
|JE|

,
|CQ|
|QA|

=
|DK|
|KF |

and
|AR|
|RB|

=
|EL|
|LD|

.

Multiplying these ratios gives,

|DK|
|KF |

· |FJ |
|JE|

· |EL|
|LD|

=
|AR|
|RB|

· |BP |
|PC|

· |CQ|
|QA|

= 1.

Hence, we have |DK|
|KF | ·

|FJ |
|JE| ·

|EL|
|LD| = 1 and by Ceva’s theorem again, we have that DJ,EK and

FL are concurrent. This completes the proof for (i). By Sine rule on triangle AXE, we have

sin(∠XAE) = sin(∠AEX)
|AX| · |EX|.

Similarly, by Sine rule on triangle AXF , sin(∠XAF ) = sin(∠AFX)
|AX| · |FX|.

These two equations combine to give

sin(∠XAE)

sin(∠XAF )
=

|EX| sin(∠AEX)

|FX| sin(∠AFX)
(1)

From Sine rule on triangle DKE, sin(∠DKE) = sin(∠EDK)
|EK| · |DE|.

Analogously, from triangle DLF , sin(∠DLF ) = sin(∠FDL)
|FL| · |DF |.

Combining the last two equations, noting that ∠EDK = ∠FDL, we have,

sin(∠DKE)

sin(∠DLF )
=

|DE||FL|
|DF ||EK|

.

Recall that EF ∥ BC,FD ∥ CA,DE ∥ AB, hence AEDF is a parallelogram and ∠AEX =
∠DKE,∠AFX = ∠DLF . This gives

sin(∠AEX)

sin(∠AFX)
=

|DE||FL|
|DF ||EK|

.

Hence, (1) becomes

sin(∠XAE)

sin(∠XAF )
=

|EX| sin(∠AEX)

|FX| sin(∠AFX)
=

|EX||DE||FL|
|FX||DF ||EK|

(2)

12



Special Maths Contest

We apply Extended Law of Sines on triangle ABC.
Let the circumradius of triangle ABC be R units. This gives us that |BC| = 2R sinA, |CA| =
2R sinB and |AB| = 2R sinC where ∠CAB = A,∠ABC = B and ∠BCA = C.
From right angled triangle ACR, |AR| = 2R sinB cosA.
From ED ∥ AB we have that ∆ACR ∼ ∆ECL.

Hence |EL|
|AR| =

|EC|
|AC| =

1
2 (Since E is the midpoint of CA)

=⇒ |EL| = R sinB cosA. (3)

Analogously, for |FK|, we have that from right angled triangle ABQ, |AQ| = 2R sinC cosA.
From FD ∥ AC we have that ∆ABQ ∼ ∆FBK.

Hence |FK|
|AQ| =

|FB|
|AB| =

1
2 (Since F is the midpoint of AB)

=⇒ |FK| = R sinC cosA. (4)

Since AEDF is a parallelogram, we have that |AF | = |DE| and |AE| = |DF , hence |DE| = R sinC
and |DF | = R sinB.
Equation (2) then becomes

sin(∠XAE)

sin(∠XAF )
=

|EX||FL| sinC
|FX||EK| sinB

(5)

In triangle EKF , we have that ∠KFE = ∠FEA(FD ∥ CA)∠FEA = ∠BCA = C(EF ∥ BC).
Now, applying Sine rule,

sin(∠KFE)

sin(∠FEK)
=

|EK|
|FK|

=⇒ sinC

sin(∠FEK)
=

|EK|
|FK|

.

Similarly, in triangle ELF , we have that ∠LEF = ∠EFA (DE ∥ AB), ∠EFA = ∠ABC = B
(EF ∥ BC).
Now, applying Sine rule,

sin(∠LEF )

sin(∠EFL)
=

|FL|
|EL|

=⇒ sinB

sin(∠EFL)
=

|FL|
|EL|

.

Combining the last two lines of equality, we have

|FL|
|EK|

=

(
sinB

sinC

)
|EL| sin(∠FEK)

|FK| sin(∠EFL)
.
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From (3) and (4) we further get that

|FL|
|EK|

=

(
sinB

sinC

)2 sin(∠FEK)

sin(∠EFL)
.

Hence (5) gives
sin(∠XAE)

sin(∠XAF )
=

(
sinB

sinC

)(
|EX| sin(∠FEK)

|FX| sin(∠EFL)

)
.

But, from Sine rule on triangle EFX, we have that |EX| sin(∠FEX)
|FX| sin(∠EFX) = 1, but sin(∠FEK) =

sin(∠FEX) and sin(∠EFL) = sin(∠EFX), hence |EX| sin(∠FEK)
|FX| sin(∠EFL) = |EX| sin(∠FEX)

|FX| sin(∠EFX) = 1.
Hence, we have

sin(∠XAE)

sin(∠XAF )
=

sinB

sinC
. (6)

Now, finally, we compute sin(∠DAB)
sin(∠DAC) . Applying Sine rule to triangleABD, we have that sin(∠DAB) =

sinB
|AD| |BD| and applying Sine rule to triangle ACD, we have that sin(∠DAC) = sinC

|AD| |CD|. Dividing

and noting that |BD| = |CD| we get

sin(∠DAB)

sin(∠DAC)
=

sinB

sinC

. Hence, we have that
sin(∠XAE)

sin(∠XAF )
=

sin(∠DAB)

sin(∠DAC)
.

But ∠XAE + ∠XAF = ∠DAB = ∠DAC = A. Consider the following:

sin(X − a)

sin a
=

sin(X − b)

sin b
.

Observe that X − a+ a = X − b+ b = X

(sinX cos a− sin a cosX)

sin a
=

(sinX cos b− sin b cosX)

sin b
=⇒ sinX cot a− cosX = sinX

cot b− cosX =⇒ cot a = cot b

Using this, we can conclude that cot(∠XAE) = cot(∠DAB) and cot(∠XAF ) = cot(∠DAC) and
hence, ∠XAE = ∠DAB,∠XAF = ∠DAC (cot(x) is injective in the range (0, π)). This implies
that AX is the A-symmedian in triangle ABC. Similarly, BX is the B-symmedian and CX is the
C-symmedian and X is the concurrency point of the symmedians in triangle ABC. This completes
the proof of the lemma.

Lemma 2 Let the tangents to the circumcircle of triangle ABC at B and C meet at T . AT is
the A-symmedian of triangle ABC. Proof is overlooked as this lemma is quite well known.

Now to the problem. By Lemma 2, TP is the T -symmedian of triangle ABT . Since K,L and
M are midpoints of TA, TB and TD respectively, we have that K,L and M are collinear and
KL ∥ AB. By Lemma 1, S is the point of concurrency of the symmedians in triangle ABT . Hence,
AS is the reflection of AL over the angle bisector of ∠TAB, and therefore, the angle bisector of
∠SAL is the same line as the angle bisector of ∠TAB. Analogously, BS is the reflection of BK

14
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over the angle bisector of ∠TBA, and therefore, the angle bisector of ∠SBK is the same line as
the angle bisector of ∠TBA. Now, the reflection of OA over the angle bisector of ∠TAB is the
altitude from A in triangle ABT . Likewise, the reflection of OB over the angle bisector of ∠TBA
is the altitude from B in triangle ABT . Hence, la, lb and TD are altitudes in triangle ABT and
are hence concurrent. qed

15
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3 Marking Scheme

Problem 1: (7 points)

Prove that
1

n

n∑
i=1

1
√
xi +

√
yi

≥
√
n√∑n

i=1 xi +
√∑n

i=1 yi

∀xi, yi ∈ R+, i = 1, 2, · · · , n.

Full Solution:
Every full solution deserves 7 points.

� 1 minor error. [-1 points]
Or

� 2 or 3 minor errors. [-2 points]

Partial Solution:
Partial solutions can gain up to a maximum of 5 points. The following are additive:

� Applying AM-HM inequality properly as in solution 1. [3 points]

� Applying QM-AM inequality properly as in solution 1. [3 points]

� Proving for the case n = 2 without proving claim as in solution 2. [3 points]

� Proving claim as in solution 2. [5 points]

� Checking the case n = 1 as in solutions 2 & 3. [0 points]

� Proving for the case n = 2m by assuming for the case n = 2 as in solution 3. [2 points]

� Proving for the case n ̸= 2m by assuming for the case n = 2m as in solution 3. [2 points]

Good Attempts:
Good attempts that don’t conform to the officials solutions can gain at most 2 points.
Making correct claims that are vital to solving the problem may be awarded 1 point.
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Problem 2: (7 points)

Find all triples of prime numbers (p, q, r), such that q|r − 1, and

r
(
pq−1 − 1

)
qp−1 − 1

is prime.

Full Solution:
Every full solution deserves 7 points.

� 1 minor error. [-1 points]

Or

� 2 or 3 minor errors. [-2 points]

Partial Solution:
Partial solutions can gain up to a maximum of 5 points. The following are additive:

� Observing the set of solutions (q, q, r). [1 point]

Or

Deducing the set of solutions (q, q, r) such that r ≥ 3, q|r− 1 from the case p = q. [2 points]

Or

Deducing the set of solutions (q, q, r) such that r ≥ 3, q|r− 1 from the case r = s. [3 points]

� Deducing the set of solutions (q, q, r) without stating r ≥ 3, q|r − 1. [-1 point]

� Stating the solution (3, 2, 3). [1 points]

� Deducing pq − p = qp − q, q|p− 1 by applying FLT (or otherwise), in the case r ̸= s, p ̸= q. [1
points]
Note: Not points for only using FLT once.

� Showing that (p, q) = (3, 2) is the only solution to pq − p = qp − q, q|p− 1 in the case q = 2.
[2 points]

� Showing that no solution to pq − p = qp − q, q|p− 1 in the case q ≥ 3. [2 points]

Good Attempts:
Good attempts that don’t conform to the officials solutions can gain at most 2 points.
Making correct claims that are vital to solving the problem may be awarded 1 point.
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Problem 3:

The numbers 2, 3, 4, · · · , 100 are written on a board. Chibuike and Ismail play a game of erasing
numbers from the board using the following rule: If the number, a, is erased, then only numbers,
b, such that gcd(a, b), can be erased in subsequent turns.
The game ends when no such b exists, to be erased, and the person that erased last wins.

If Chibuike starts the game, does there exist a winning strategy? If yes, whom? (Determine
with proof.)

Full Solution:
Every full solution deserves 7 points.

� 1 minor error. [-1 points]

Or

� 2 or 3 minor errors. [-2 points]

Good Approach:
Good approaches can gain up to a maximum of 4 points. The following are additive:
Points are gained by showing

� If a ∈ S and p|a, then p < 100. There are exactly 25 such primes. [1 point]

� If p < 100, then there exists exactly one a ∈ S such that p|a. [1 point]

� If a ∈ S, then there are at most 3 primes satisfying p|a. Moreover, they form one of the sets
{2, 3, 11} , {2, 3, 13}, or a subset of {2, 3, 5, 7}. Thus only one such number can belong to S.
[1 point]

� If a ∈ S has exactly 2 prime divisors, then each must have a divisor from the set {2, 3, 5, 7}.
Thus, there are at most 4 such numbers. [1 point]

� If a ∈ S has 3 prime divisors, then there is at most one other element of S with more than
one prime divisor, except in the special cases when
S = {66, 91, 85, · · · } , {66, 91, 85, · · · } , {66, 91, 95, · · · } , {78, 77, 85, · · · }, or {78, 77, 95, · · · }. [1
point]

� If p > 50, then p ∈ S. [1 point]

Good attempts:
Good attempts that don’t conform to the officials solutions can gain at most 2 points.
Making correct claims that are vital to solving the problem may be awarded 1 point.

Demonstrating an intuitive strategy (regardless of final answers) may be awarded
up to 4 points.

Note: other solution path ways may exist so the scheme is still open for discussion depending
on the need.
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Problem 4:
Let Ω be a circle with center O with P , a point lying outside. Tangents from P are drawn to touch
the circle at A and B. A point, T is arbitrary chosen on major arc AB, and D is the foot of T on
AB. K,L,M,N are the mid points of TA, TB, TD,AB respectively. PT intersects MN at point
S. Lines la and lb are the reflection of OA and OB over the angle bisectors of ∠SAL and ∠SBK,
respectively. Show that la, lb and TD are concurrent.

Full Solution:
Every full solution deserves 7 points.

� 1 minor error. [-1 points]

Or

� 2 or 3 minor errors. [-2 points]

Partial Solution:
Partial solutions can gain up to a maximum of 5 points. The following are additive:

� Applying claim as in solution 1. [2 points]

� Proving claim as in solution 1. [5 points]
The breakdown is as follows:

-Introducing point P ′. [1 point]
-Show that D,S, P ′ are collinear. [1 point]
-Introduce point K ′ and apply Menalaus’s theorem. [1 point]
-Show that K′A

AB = KT
TB . [1 point]

-Show that ∆K ′AB and ∆KTB are similar. [1 point]

� Stating clearly (without proof) Lemma 1. [1 point]

� Stating Lemma 2. [0 points]

� Applying Lemma 1 and Lemma 2 (after claiming/stating them) to conclude. [1 point]

� Proving Lemma 2 as in solution 2. [1 point]

� Proving Lemma 1 as in solution 2. [4 points]
The breakdown is as follows:

-Proving part (i). [1 point]
-Getting equation 5 (or something comparable). [1 point]
-Getting equation 6 (after equation 5), or something comparable. [1 point]
-Completing the proof. [1 point]

Good Attempts:
Good attempts that don’t conform to the officials solutions can gain at most 2 points.
Making correct claims that are vital to solving the problem may be awarded 1 point.
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