

SMC Round 2, 2022 Problems, Solutions and Marking Scheme

By Onah Pius Aje For SMA December 13, 2022

1 Problems

Problem 1:

Let $n \in \mathbb{N}$. Prove that

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} \ge \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n} x_i} + \sqrt{\sum_{i=1}^{n} y_i}}$$

 $\forall x_i, y_i \in \mathbb{R}^+, i = 1, 2, \cdots, n.$

Problem 2:

Find all triples of prime numbers (p, q, r), such that q|r - 1, and

$$\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}$$

is prime.

Problem 3:

The numbers $2, 3, 4, \dots, 100$ are written on a board. Chibuike and Ismail play a game of erasing numbers from the board using the following rule: If the number, a, is erased, then only numbers, b, such that gcd(a, b) = 1, can be erased in subsequent turns.

The game ends when no such b exists, to be erased, and the person that erased last wins.

If Chibuike starts the game, does there exist a winning strategy for him? (Determine with proof.)

Problem 4:

Let Ω be a circle with center O with P, a point lying outside. Tangents from P are drawn to touch the circle at A and B. A point, T is arbitrary chosen on major arc AB, and D is the foot of T on AB. K, L, M, N are the mid points of TA, TB, TD, AB respectively. PT intersects MN at point S. Lines l_a and l_b are the reflection of OA and OB over the angle bisectors of $\angle SAL$ and $\angle SBK$, respectively. Show that l_a, l_b and TD are concurrent.

2 Solutions

Problem 1:

Let $n \in \mathbb{N}$. Prove that

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} \ge \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n} x_i} + \sqrt{\sum_{i=1}^{n} y_i}}$$

 $\forall x_i, y_i \in \mathbb{R}^+, i = 1, 2, \cdots, n.$

Solution 1

Let $AM(a_i)$, $HM(a_i)$, $QM(a_i)$ denote the arithmetic mean, the harmonic mean, and the quadratic mean respectively, of $a_1, a_2, \dots, a_n \in \mathbb{R}^+$. Then it follows that $QM(a_i) \ge AM(a_i) \ge HM(a_i) > 0$.

Thus,

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} = AM\left(\frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}\right)$$
$$\geq HM\left(\frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}\right) = \frac{1}{AM\left(\sqrt{x_{i}}+\sqrt{y_{i}}\right)} = \frac{1}{AM\left(\sqrt{x_{i}}\right)+AM\left(\sqrt{y_{i}}\right)}$$
$$\geq \frac{1}{QM\left(\sqrt{x_{i}}\right)+QM\left(\sqrt{y_{i}}\right)} = \frac{1}{\sqrt{AM\left(x_{i}\right)}+\sqrt{AM\left(y_{i}\right)}} = \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n}x_{i}}+\sqrt{\sum_{i=1}^{n}y_{i}}}.$$

Solution 2 (Induction)

CLAIM: Let $\alpha \in [0, 1]$ and let $x, y, X, Y \in \mathbb{R}^+$. Then

$$\frac{\alpha}{\sqrt{X} + \sqrt{Y}} + \frac{1 - \alpha}{\sqrt{x} + \sqrt{y}} \ge \frac{1}{\sqrt{\alpha X + (1 - \alpha)x} + \sqrt{\alpha Y + (1 - \alpha)y}}$$

Proof 1 of claim:

Fix $x, y, X, Y \in \mathbb{R}^+$ and consider the function in α :

$$F(\alpha) = f(\alpha) - \frac{1}{g(\alpha)},$$

where

$$f(\alpha) = \left(\frac{\alpha}{\sqrt{X} + \sqrt{Y}} + \frac{1 - \alpha}{\sqrt{x} + \sqrt{y}}\right), g(\alpha) = \sqrt{\alpha X + (1 - \alpha)x} + \sqrt{\alpha Y + (1 - \alpha)y}$$

Observe that F(0) = F(1) = 0, so it is enough to show that F is concave. First observe that f is linear and g is concave since

$$g''(\alpha) = -\frac{(X-x)^2}{4\sqrt{\alpha X + (1-\alpha)x^3}} - \frac{(Y-y)^2}{4\sqrt{\alpha Y + (1-\alpha)y^3}} \le 0.$$

Indeed,

$$F'(\alpha) = f'(\alpha) + \frac{g'(\alpha)}{g(\alpha)^2} \implies F''(\alpha) = 0 + \frac{g''(\alpha)}{g(\alpha)^2} - \frac{2g'(\alpha)^2}{g(\alpha)^3} \le 0. \quad \Box$$

Proof 2 of claim:

Let $h : \mathbb{R}^2_+ \longrightarrow \mathbb{R}_+$ be given by

$$h(x,y) := \frac{1}{\sqrt{x} + \sqrt{y}}.$$

This can be viewed as a surface in 3D. Then the claim can be written as

$$\alpha h(X,Y) + (1-\alpha)h(x,y) \ge h \left[\alpha X + (1-\alpha)x, \alpha Y + (1-\alpha)y \right] = h \left[\alpha(X,Y) + (1-\alpha)(x,y) \right].$$

That is, h is convex by Jensen's inequality. This equivalent to checking that the Hessian of h is positive definite.

The Hessian is given by

$$H(h) = \begin{pmatrix} h_{xx} & h_{xy} \\ h_{yx} & h_{yy} \end{pmatrix}.$$

I leave the rest of the working to the reader. $\hfill\square$

Now, we are ready to proceed via induction on n.

- n = 1: This is trivial as we have equality.
- n = 2: RTP:

$$\frac{1}{2}\left(\frac{1}{\sqrt{x_1} + \sqrt{y_1}} + \frac{1}{\sqrt{x_2} + \sqrt{y_2}}\right) \ge \frac{\sqrt{2}}{\sqrt{x_1 + x_2} + \sqrt{y_1 + y_2}}.$$

To see this, take $\alpha = \frac{1}{2}$, $X = x_1$, $Y = y_1$, $x = x_2$, $y = y_2$ in claim.

• Assume true for n = k, some $k \ge 2$:

$$S = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} \ge \frac{\sqrt{k}}{\sqrt{\sum_{i=1}^{k} x_i} + \sqrt{\sum_{i=1}^{k} y_i}}$$

• Show for n = k + 1: RTP

$$\frac{1}{k+1}\sum_{i=1}^{k+1}\frac{1}{\sqrt{x_i}+\sqrt{y_i}} \ge \frac{\sqrt{k+1}}{\sqrt{\sum_{i=1}^{k+1}x_i}+\sqrt{\sum_{i=1}^{k+1}y_i}}.$$

Now let $x = x_{k+1}, y = y_{k+1}$, and

$$X = \frac{1}{k} \sum_{i=1}^{k} x_i, Y = \frac{1}{k} \sum_{i=1}^{k} y_i.$$

So,

$$LHS = \frac{1}{k+1} \sum_{i=1}^{k+1} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} = \frac{1}{k+1} \left(kS + \frac{1}{\sqrt{x} + \sqrt{y}} \right) \ge \frac{1}{k+1} \left(\frac{k}{\sqrt{X} + \sqrt{Y}} + \frac{1}{\sqrt{x} + \sqrt{y}} \right),$$

$$\geq \frac{\sqrt{k+1}}{\sqrt{kX+x} + \sqrt{kY+y}} = RHS.$$

The first inequality follows from assume step, while the last inequality follows by taking $\alpha = \frac{k}{k+1}$ in claim. \Box

Solution 3 (Partly induction)

CLAIM: Let $x, y, X, Y \in \mathbb{R}^+$. Then

$$\frac{1}{\sqrt{X} + \sqrt{Y}} + \frac{1}{\sqrt{x} + \sqrt{y}} \ge \frac{2\sqrt{2}}{\sqrt{X + x} + \sqrt{Y + y}}$$

Proof 1 of claim:

Apply claim as in solution 2. \Box

Proof 2 of claim:

Let $X = a^2, Y = b^2, x = c^2, y = d^2$. Then **claim** becomes

$$\frac{1}{a+b} + \frac{1}{c+d} \ge \frac{2\sqrt{2}}{\sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}}$$
$$\iff \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2} \ge \frac{2\sqrt{2}(a+b)(c+d)}{a+b+c+d}$$

Indeed,

$$\sqrt{a^2 + c^2} + \sqrt{b^2 + d^2} \ge \frac{a + c + b + d}{\sqrt{2}} \ge \frac{2\sqrt{2}(a + b)(c + d)}{a + b + c + d},$$

The first in equality follows from QM-AM, while the second follows from AM-GM (after cross multiplication) or AM-HM (indirectly). \Box

First, we prove the problem for $n = 2^m$, some $m \in \mathbb{N}_0$, by induction on m.

• m = 0: This is trivial as we have equality.

•
$$m = 1$$
: RTP:

$$\frac{1}{2} \left(\frac{1}{\sqrt{x_1} + \sqrt{y_1}} + \frac{1}{\sqrt{x_2} + \sqrt{y_2}} \right) \ge \frac{\sqrt{2}}{\sqrt{x_1 + x_2} + \sqrt{y_1 + y_2}}$$

This is exactly the same as **claim**.

• Assume true for m = k, some $k \ge 1$:

$$\frac{1}{2^k} \sum_{i=1}^{2^k} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} \ge \frac{\sqrt{2^k}}{\sqrt{\sum_{i=1}^{2^k} x_i} + \sqrt{\sum_{i=1}^{2^k} y_i}}$$

• Show for m = k + 1: RTP

$$\frac{1}{2^{k+1}} \sum_{i=1}^{2^{k+1}} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} \ge \frac{\sqrt{2^{k+1}}}{\sqrt{\sum_{i=1}^{2^{k+1}} x_i} + \sqrt{\sum_{i=1}^{2^{k+1}} y_i}}.$$

Indeed,

$$\begin{split} \frac{1}{2^{k+1}} \sum_{i=1}^{2^{k+1}} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} &= \frac{1}{2} \left\{ \frac{1}{2^k} \sum_{i=1}^{2^k} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} + \frac{1}{2^k} \sum_{i=1}^{2^k} \frac{1}{\sqrt{x_{i+2^k}} + \sqrt{y_{i+2^k}}} \right\} \\ &\geq \frac{1}{2} \left\{ \frac{\sqrt{2^k}}{\sqrt{\sum_{i=1}^{2^k} x_i} + \sqrt{\sum_{i=1}^{2^k} y_i}} + \frac{\sqrt{2^k}}{\sqrt{\sum_{i=1}^{2^k} x_{i+2^k}} + \sqrt{\sum_{i=1}^{2^k} y_{i+2^k}}} \right\} \\ &= \frac{1}{2} \left\{ \frac{1}{\sqrt{\frac{\sum_{i=1}^{2^k} x_i}{2^k}} + \sqrt{\frac{\sum_{i=1}^{2^k} y_i}{2^k}}} + \frac{1}{\sqrt{\frac{\sum_{i=1}^{2^k} x_{i+2^k}}{2^k}} + \sqrt{\frac{\sum_{i=1}^{2^k} y_{i+2^k}}{2^k}}} \right\} \\ &\geq \frac{\sqrt{2}}{\sqrt{\frac{\sum_{i=1}^{2^k} x_i}{2^k}} + \frac{\sum_{i=1}^{2^k} x_{i+2^k}}{2^k}} + \sqrt{\frac{\sum_{i=1}^{2^k} y_i}{2^k}} + \frac{\sum_{i=1}^{2^k} y_{i+2^k}}{2^k}} \\ &= \frac{\sqrt{2^{k+1}}}{\sqrt{\sum_{i=1}^{2^{k+1}} x_i} + \sqrt{\sum_{i=1}^{2^{k+1}} x_i}} + \sqrt{\sum_{i=1}^{2^{k+1}} y_i}}. \end{split}$$

The first inequality follows from assume step, while the last inequality follows from claim.

Next, we prove for general $n \neq 2^m$. We may assume $n < 2^m$, some m > 1. More specifically, we shall show that if the problem holds for some n = k > 3, then it also holds for n = k - 1. This is a finite downward induction.

The construction is quite straight forward. To prove for n = k - 1, apply the case n = k by taking x_i for $i = 1, 2, \dots, k - 1$ as before, then take x_k as their arithmetic mean (same goes for y_i). The rest is easy deduction. \Box

Problem 2:

Find all triples of prime numbers (p, q, r), such that q|r - 1, and

$$\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}$$

is prime.

Solution

Let

$$\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1} = s,$$

then

$$r(p^{q-1}-1) = s(q^{p-1}-1).$$

Note that

$$r = s \iff p^{q-1} - 1 = q^{p-1} - 1 \iff p^{q-1} = q^{p-1} \iff p^{\frac{1}{p-1}} = q^{\frac{1}{q-1}} \iff p = q.$$

To see the final step, take \ln and consider the function $f(x) = \frac{\ln(x)}{x-1}$. Then $f'(x) = \frac{x-1-x\ln(x)}{x(x-1)^2} < 0$ for x > 1, since $x\ln(x) + 1 - x = \int_1^x \ln(t) dt$.

In this case, need q|r-1. Thus we get solution (q, q, r), where r is an odd prime and q is a prime divisor of r-1.

Suppose $r \neq s$, then $p \neq q$. Thus by FLT, have

$$p|(q^{p-1}-1) \implies p|r(p^{q-1}-1) \implies p|r,$$

$$q|(p^{q-1}-1) \implies q|s(q^{p-1}-1) \implies q|s.$$

Therefore, p = r, q = s. Need $p^q - p = q^p - q$ and q|p - 1. Consider the function $g(x) = q^x - q - x^q + x$. Have g(q) = 0 and $g'(x) = q^x \ln(q) - qx^{q-1} + 1 > q[q^{x-1} - x^{q-1}] > 0$ for $x > q \ge 3$. That is, g is strictly increasing (and hence positive) in the interval $(q, +\infty)$, when $q \ge 3$. However, g(p) = 0, p > q. Thus, q = 2.

Now for q = 2, have g(4) = 2 and $g'(x) = 2^x \ln(2) - 2x + 1 > 2^{x-1} - 2x = \int_4^x [2^{t-1} \ln(2) - 2] dt \ge 0$ for $x \ge 4$. That is, g is strictly increasing (and hence positive) in the interval $[4, +\infty)$. Again, $g(p) = 0, p \ge 3$, so we conclude that p = 3. Therefore, p = r = 3, q = 2.

Note 1:

The first inequality may be avoided by taking the two cases: p = q and $p \neq q$, as opposed to taking cases r = s and $r \neq s$ as in the proof above.

Note 2:

Since the domains can be restricted to positive integers, the above inequalities can also be shown using **induction** or **standard** inequality. The induction approach is standard, so I will only present the standard inequality application in the case of $p^q - p = q^p - q, q|p - 1$:

If $q \geq 3$.

Then $p^q > p^q - p = q^p - q > q^{p-1}$. Thus $p > q^{\frac{p-1}{q}}$. (This still holds in the case of $p^{q-1} = q^{p-1}$.) $q|p-1 \implies p = 2qk+1$, for some $k \ge 1$. So $2kq + 1 = p > q^{2k} \implies 2k \ge q^{2k-1} \ge 1 + (q-1)(q^{2k-2} + q^{2k-2} + \dots + q + 1) \ge 1 + 2(2k-1)$. This is a contradiction.

If q = 2. (Then $p \ge 3$.) First, $n \ge 1 \implies 2^n = 2(1 + 1 + 2 + 4 + \dots + 2^{n-3} + 2^{n-2}) \ge 2n$. Hence,

$$p\left(\frac{p-1}{2}\right) = 2^{p-1} - 1 = \left(2^{\frac{p-1}{2}} + 1\right) \left(2^{\frac{p-1}{2}} - 1\right) \ge \left(2\left(\frac{p-1}{2}\right) + 1\right) \left(2\left(\frac{p-1}{2}\right) - 1\right) = p(p-2).$$

So, $p = 3$.

Problem 3:

The numbers $2, 3, 4, \dots, 100$ are written on a board. Chibuike and Ismail play a game of erasing numbers from the board using the following rule: If the number, a, is erased, then only numbers, b, such that gcd(a, b) = 1, can be erased in subsequent turns.

The game ends when no such b exists, to be erased, and the person that erased last wins.

If Chibuike starts the game, does there exist a winning strategy for him? (Determine with proof.)

Solution

Chibuike (the first player) has a wining strategy as follows:

First note that every pair of numbers erased will be coprime. Let S denote the set of these numbers and let p denote a prime. This implies that

- If $a \in S$ and p|a, then p < 100. There are exactly 25 such primes.
- If p < 100, then there exists exactly one $a \in S$ such that p|a.
- If $a \in S$, then there are at most 3 primes satisfying p|a. Moreover, they form one of the sets $\{2, 3, 11\}, \{2, 3, 13\}, \text{ or a subset of } \{2, 3, 5, 7\}$. Thus only one such number can belong to S.
- If $a \in S$ has exactly 2 prime divisors, then each must have a divisor from the set $\{2, 3, 5, 7\}$. Thus, there are at most 4 such numbers.
- If $a \in S$ has 3 prime divisors, then there is at most one other element of S with more than one prime divisor, except in the special cases when $S = \{66, 91, 85, \cdots\}, \{66, 91, 85, \cdots\}, \{66, 91, 95, \cdots\}, \{78, 77, 85, \cdots\}, \text{ or } \{78, 77, 95, \cdots\}.$
- If p > 50, then $p \in S$.

In what follows, we present a simple strategy: To begin the game, Chibuike erases $14 = 2 \cdot 7$.

- If Ismail erases 3^a , then Chibuike will erase 55.
- If Ismail erases 5^a , then Chibuike will erase 33.
- If Ismail erases $3^a 5^b$, then Chibuike will erase 11.
- If Ismail erases $3^{a}p$, where p > 10 is prime, then Chibuike will erase 5.
- If Ismail erases 5p, where p > 10 is prime, then Chibuike will erase 3.
- If Ismail erases p > 10, the Chibuike will erase 15.

After this, no player can erase a number that is a multiple of 2, 3, 5 or 7, so it must be prime greater than 10.

Since 5 primes have been used up so far, the remaining 20 primes ensures that Chibuike erases the last prime.

Note that in the strategy above, the role of 2 and 3 can be swapped. Same goes for 5 and 7, and also for 11 and 13.

Problem 4:

Let Ω be a circle with center O with P, a point lying outside. Tangents from P are drawn to touch the circle at A and B. A point, T is arbitrary chosen on major arc AB, and D is the foot of T on AB. K, L, M, N are the mid points of TA, TB, TD, AB respectively. PT intersects MN at point S. Lines l_a and l_b are the reflection of OA and OB over the angle bisectors of $\angle SAL$ and $\angle SBK$, respectively. Show that l_a, l_b and TD are concurrent.

Solution 1

CLAIM: BS is the reflection of BK on the angle bisector of $\angle ABT$, which in turn is equal to the angle bisector of $\angle SBK$. Similarly, AS is the reflection of AL on the angle bisector of $\angle BAT$, which in turn is equal to the angle bisector of $\angle SAL$.

Proof. Let P' be the reflection of P on AB. Then PP' is parallel to TD, N is midpoint of PP', M is midpoint of TD, PST is collinear, and NSM is collinear. Thus, by homothethy, have P'SD

is also collinear and $\frac{DS}{SP'} = \frac{DT}{PP'}$.

Now, let K' be the point of intersection of BS and AP'. We shall show that $\frac{K'A}{AB} = \frac{KT}{TB}$. Since $\angle K'AB = \angle PAB = \angle KTB$, it will follow from side S-A-S criteria that $\Delta K'AB$ and ΔKTB are similar, so that $\angle ABS = \angle K'BA = \angle KBT$ as desired.

Indeed, Menalaus's theorem applied to line BSK' in $\Delta P'AD$ gives

$$1 = \frac{AB}{BD} \cdot \frac{DS}{SP'} \cdot \frac{P'K'}{K'A} = \frac{AB}{BD} \cdot \frac{DT}{PP'} \cdot \frac{P'K'}{K'A} = \frac{2AN}{BD} \cdot \frac{DT}{2PN} \cdot \frac{P'A - K'A}{K'A}$$
$$\implies 1 = \frac{AN}{PN} \cdot \frac{DT}{BD} \cdot \frac{PA - K'A}{K'A} = \frac{\tan(\angle ABT)}{\tan(\angle BAP)} \cdot \frac{PA - K'A}{K'A}$$
$$\implies 1 = \frac{AN\sin(\angle ABT) - K'A\sin(\angle ABT)\cos(\angle BAP)}{K'A\sin(\angle BAP)\cos(\angle ABT)}$$
$$\implies K'A\sin(\angle BAP + \angle ABT) = \frac{1}{2}AB\sin(\angle ABT)$$
$$\implies \frac{K'A}{AB} = \frac{\frac{1}{2}\sin(\angle ABT)}{\sin(\angle BAT)} = \frac{KT}{TB}.$$

Using the claim, we have that l_a and l_b are the reflection of OA and OB over the angle bisectors of $\angle BAT$ and $\angle ABT$, respectively. This implies that l_a and l_b are the altitudes of $\triangle ABT$ from Aand B respectively. The third altitude is TD so it follows that l_a, l_b and TD are concurrent. \Box

Solution 2

Lemma 1:

In a triangle ABC with D, E, F midpoints of sides BC, CA and AB respectively, let J, K, L be points on EF, FD and DE respectively, such that $AJ \perp EF, BK \perp FD$ and $CL \perp DE$.

- (i) DJ, EK and FL are concurrent.
- (ii) Suppose the point of concurrency in (i) is X, then AX is the A-symmedian in triangle ABC. Furthermore, this will imply that X is the concurrency point of the symmedians in triangle ABC since B or C can take the place of A. Hence, we have 6 concurrent lines. (Symmedian is the reflection of the median over the angle bisector of the respective angle)

Proof:

D, E, F are the midpoints of sides BC, CA and AB respectively, hence we have $EF \parallel BC, FD \parallel CA, DE \parallel AB$. Let AJ intersect BC at P, BK intersect CA at Q and CL intersect AB at R. Since $AJ \perp EF, BK \perp FD$ and $CL \perp DE$, we have that $AP \perp BC, BQ \perp CA$ and $CR \perp AB$ (They are altitudes in triangle ABC). It is well known that the altitudes of a triangle are concurrent, therefore, AP, BQ and CR are concurrent, hence by Ceva's theorem, we have that

$$\frac{|AR|}{|RB|} \cdot \frac{|BP|}{|PC|} \cdot \frac{|CQ|}{|QA|} = 1.$$

Also, from $EF \parallel BC, FD \parallel CA, DE \parallel AB$, we have the following ratio equalities:

$$\frac{|BP|}{|PC|} = \frac{|FJ|}{|JE|}, \frac{|CQ|}{|QA|} = \frac{|DK|}{|KF|} \text{ and } \frac{|AR|}{|RB|} = \frac{|EL|}{|LD|}$$

Multiplying these ratios gives,

$$\frac{|DK|}{|KF|} \cdot \frac{|FJ|}{|JE|} \cdot \frac{|EL|}{|LD|} = \frac{|AR|}{|RB|} \cdot \frac{|BP|}{|PC|} \cdot \frac{|CQ|}{|QA|} = 1.$$

Hence, we have $\frac{|DK|}{|KF|} \cdot \frac{|FJ|}{|JE|} \cdot \frac{|EL|}{|LD|} = 1$ and by Ceva's theorem again, we have that DJ, EK and FL are concurrent. This completes the proof for (i). By Sine rule on triangle AXE, we have

 $\sin(\angle XAE) = \frac{\sin(\angle AEX)}{|AX|} \cdot |EX|.$

Similarly, by Sine rule on triangle AXF, $\sin(\angle XAF) = \frac{\sin(\angle AFX)}{|AX|} \cdot |FX|$.

These two equations combine to give

$$\frac{\sin(\angle XAE)}{\sin(\angle XAF)} = \frac{|EX|\sin(\angle AEX)}{|FX|\sin(\angle AFX)} \tag{1}$$

From Sine rule on triangle DKE, $\sin(\angle DKE) = \frac{\sin(\angle EDK)}{|EK|} \cdot |DE|$.

Analogously, from triangle DLF, $\sin(\angle DLF) = \frac{\sin(\angle FDL)}{|FL|} \cdot |DF|$.

Combining the last two equations, noting that $\angle EDK = \angle FDL$, we have,

$$\frac{\sin(\angle DKE)}{\sin(\angle DLF)} = \frac{|DE||FL|}{|DF||EK|}.$$

Recall that $EF \parallel BC, FD \parallel CA, DE \parallel AB$, hence AEDF is a parallelogram and $\angle AEX = \angle DKE, \angle AFX = \angle DLF$. This gives

$$\frac{\sin(\angle AEX)}{\sin(\angle AFX)} = \frac{|DE||FL|}{|DF||EK|}.$$

Hence, (1) becomes

$$\frac{\sin(\angle XAE)}{\sin(\angle XAF)} = \frac{|EX|\sin(\angle AEX)}{|FX|\sin(\angle AFX)} = \frac{|EX||DE||FL|}{|FX||DF||EK|}$$
(2)

We apply Extended Law of Sines on triangle ABC.

Let the circumradius of triangle ABC be R units. This gives us that $|BC| = 2R \sin A, |CA| = 2R \sin B$ and $|AB| = 2R \sin C$ where $\angle CAB = A, \angle ABC = B$ and $\angle BCA = C$. From right angled triangle $ACR, |AR| = 2R \sin B \cos A$. From $ED \parallel AB$ we have that $\triangle ACR \sim \triangle ECL$. Hence $\frac{|EL|}{|AR|} = \frac{|EC|}{|AC|} = \frac{1}{2}$ (Since E is the midpoint of CA)

$$\implies |EL| = R\sin B\cos A. \tag{3}$$

Analogously, for |FK|, we have that from right angled triangle ABQ, $|AQ| = 2R \sin C \cos A$. From $FD \parallel AC$ we have that $\Delta ABQ \sim \Delta FBK$. Hence $\frac{|FK|}{|AQ|} = \frac{|FB|}{|AB|} = \frac{1}{2}$ (Since F is the midpoint of AB)

$$\implies |FK| = R\sin C\cos A. \tag{4}$$

Since AEDF is a parallelogram, we have that |AF| = |DE| and |AE| = |DF, hence $|DE| = R \sin C$ and $|DF| = R \sin B$.

Equation (2) then becomes

$$\frac{\sin(\angle XAE)}{\sin(\angle XAF)} = \frac{|EX||FL|\sin C}{|FX||EK|\sin B}$$
(5)

In triangle EKF, we have that $\angle KFE = \angle FEA(FD \parallel CA) \angle FEA = \angle BCA = C(EF \parallel BC)$. Now, applying Sine rule,

$$\frac{\sin(\angle KFE)}{\sin(\angle FEK)} = \frac{|EK|}{|FK|} \implies \frac{\sin C}{\sin(\angle FEK)} = \frac{|EK|}{|FK|}$$

Similarly, in triangle ELF, we have that $\angle LEF = \angle EFA$ ($DE \parallel AB$), $\angle EFA = \angle ABC = B$ ($EF \parallel BC$).

Now, applying Sine rule,

$$\frac{\sin(\angle LEF)}{\sin(\angle EFL)} = \frac{|FL|}{|EL|} \implies \frac{\sin B}{\sin(\angle EFL)} = \frac{|FL|}{|EL|}$$

Combining the last two lines of equality, we have

$$\frac{|FL|}{|EK|} = \left(\frac{\sin B}{\sin C}\right) \frac{|EL|\sin(\angle FEK)}{|FK|\sin(\angle EFL)}.$$

From (3) and (4) we further get that

$$\frac{|FL|}{|EK|} = \left(\frac{\sin B}{\sin C}\right)^2 \frac{\sin(\angle FEK)}{\sin(\angle EFL)}.$$

Hence (5) gives

$$\frac{\sin(\angle XAE)}{\sin(\angle XAF)} = \left(\frac{\sin B}{\sin C}\right) \left(\frac{|EX|\sin(\angle FEK)}{|FX|\sin(\angle EFL)}\right)$$

But, from Sine rule on triangle EFX, we have that $\frac{|EX|\sin(\angle FEX)|}{|FX|\sin(\angle EFX)|} = 1$, but $\sin(\angle FEK) = \sin(\angle FEX)$ and $\sin(\angle EFL) = \sin(\angle EFX)$, hence $\frac{|EX|\sin(\angle FEK)|}{|FX|\sin(\angle EFL)|} = \frac{|EX|\sin(\angle FEX)|}{|FX|\sin(\angle EFX)|} = 1$. Hence, we have

$$\frac{\sin(\angle XAE)}{\sin(\angle XAF)} = \frac{\sin B}{\sin C}.$$
(6)

Now, finally, we compute $\frac{\sin(\angle DAB)}{\sin(\angle DAC)}$. Applying Sine rule to triangle ABD, we have that $\sin(\angle DAB) = \frac{\sin B}{|AD|}|BD|$ and applying Sine rule to triangle ACD, we have that $\sin(\angle DAC) = \frac{\sin C}{|AD|}|CD|$. Dividing and noting that |BD| = |CD| we get

$$\frac{\sin(\angle DAB)}{\sin(\angle DAC)} = \frac{\sin B}{\sin C}$$

. Hence, we have that

$$\frac{\sin(\angle XAE)}{\sin(\angle XAF)} = \frac{\sin(\angle DAB)}{\sin(\angle DAC)}.$$

But $\angle XAE + \angle XAF = \angle DAB = \angle DAC = A$. Consider the following:

$$\frac{\sin(X-a)}{\sin a} = \frac{\sin(X-b)}{\sin b}.$$

Observe that X - a + a = X - b + b = X

$$\frac{(\sin X \cos a - \sin a \cos X)}{\sin a} = \frac{(\sin X \cos b - \sin b \cos X)}{\sin b} \implies \sin X \cot a - \cos X = \sin X$$
$$\cot b - \cos X \implies \cot a = \cot b$$

Using this, we can conclude that $\cot(\angle XAE) = \cot(\angle DAB)$ and $\cot(\angle XAF) = \cot(\angle DAC)$ and hence, $\angle XAE = \angle DAB, \angle XAF = \angle DAC$ ($\cot(x)$ is injective in the range $(0, \pi)$). This implies that AX is the A-symmedian in triangle ABC. Similarly, BX is the B-symmedian and CX is the C-symmedian and X is the concurrency point of the symmedians in triangle ABC. This completes the proof of the lemma.

Lemma 2 Let the tangents to the circumcircle of triangle ABC at B and C meet at T. AT is the A-symmetry ABC. Proof is overlooked as this lemma is quite well known.

Now to the problem. By Lemma 2, TP is the *T*-symmedian of triangle ABT. Since K, L and M are midpoints of TA, TB and TD respectively, we have that K, L and M are collinear and $KL \parallel AB$. By Lemma 1, S is the point of concurrency of the symmedians in triangle ABT. Hence, AS is the reflection of AL over the angle bisector of $\angle TAB$, and therefore, the angle bisector of $\angle SAL$ is the same line as the angle bisector of $\angle TAB$. Analogously, BS is the reflection of BK

over the angle bisector of $\angle TBA$, and therefore, the angle bisector of $\angle SBK$ is the same line as the angle bisector of $\angle TBA$. Now, the reflection of OA over the angle bisector of $\angle TAB$ is the altitude from A in triangle ABT. Likewise, the reflection of OB over the angle bisector of $\angle TBA$ is the altitude from B in triangle ABT. Hence, l_a, l_b and TD are altitudes in triangle ABT and are hence concurrent. qed

3 Marking Scheme

Problem 1: (7 points)

Prove that

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_i} + \sqrt{y_i}} \ge \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n} x_i} + \sqrt{\sum_{i=1}^{n} y_i}}$$

 $\forall x_i, y_i \in \mathbb{R}^+, i = 1, 2, \cdots, n.$

Full Solution:

Every full solution deserves 7 points.

- 1 minor error. [-1 points] Or
- 2 or 3 minor errors. [-2 points]

Partial Solution:

Partial solutions can gain up to a maximum of **5 points**. The following are additive:

- Applying AM-HM inequality properly as in solution 1. [3 points]
- Applying QM-AM inequality properly as in solution 1. [3 points]
- Proving for the case n = 2 without proving claim as in solution 2. [3 points]
- Proving claim as in solution 2. [5 points]
- Checking the case n = 1 as in solutions 2 & 3. [0 points]
- Proving for the case $n = 2^m$ by assuming for the case n = 2 as in solution 3. [2 points]
- Proving for the case $n \neq 2^m$ by assuming for the case $n = 2^m$ as in solution 3. [2 points]

Good Attempts:

Good attempts that don't conform to the officials solutions can gain at most **2 points**. Making correct claims that are vital to solving the problem may be awarded **1 point**.

Problem 2: (7 points)

Find all triples of prime numbers (p, q, r), such that q|r - 1, and

$$\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}$$

is prime.

Full Solution:

Every full solution deserves 7 points.

• 1 minor error. [-1 points]

Or

• 2 or 3 minor errors. [-2 points]

Partial Solution:

Partial solutions can gain up to a maximum of 5 points. The following are additive:

• Observing the set of solutions (q, q, r). [1 point]

Or

Deducing the set of solutions (q, q, r) such that $r \ge 3, q | r - 1$ from the case p = q. [2 points]

Or

Deducing the set of solutions (q, q, r) such that $r \ge 3, q | r - 1$ from the case r = s. [3 points]

- Deducing the set of solutions (q, q, r) without stating $r \ge 3, q|r-1$. [-1 point]
- Stating the solution (3,2,3). [1 points]
- Deducing p^q − p = q^p − q, q|p − 1 by applying FLT (or otherwise), in the case r ≠ s, p ≠ q. [1 points]
 Note: Not points for only using FLT once.
- Showing that (p,q) = (3,2) is the only solution to $p^q p = q^p q, q|p-1$ in the case q = 2. [2 points]
- Showing that no solution to $p^q p = q^p q, q|p-1$ in the case $q \ge 3$. [2 points]

Good Attempts:

Good attempts that don't conform to the officials solutions can gain at most **2 points**. Making correct claims that are vital to solving the problem may be awarded **1 point**.

Problem 3:

The numbers $2, 3, 4, \dots, 100$ are written on a board. Chibuike and Ismail play a game of erasing numbers from the board using the following rule: If the number, a, is erased, then only numbers, b, such that gcd(a, b), can be erased in subsequent turns.

The game ends when no such b exists, to be erased, and the person that erased last wins.

If Chibuike starts the game, does there exist a winning strategy? If yes, whom? (Determine with proof.)

Full Solution:

Every full solution deserves 7 points.

• 1 minor error. [-1 points]

Or

• 2 or 3 minor errors. [-2 points]

Good Approach:

Good approaches can gain up to a maximum of **4 points**. The following are additive: Points are gained by showing

- If $a \in S$ and p|a, then p < 100. There are exactly 25 such primes. [1 point]
- If p < 100, then there exists exactly one $a \in S$ such that p|a. [1 point]
- If $a \in S$, then there are at most 3 primes satisfying p|a. Moreover, they form one of the sets $\{2,3,11\}, \{2,3,13\}$, or a subset of $\{2,3,5,7\}$. Thus only one such number can belong to S. [1 point]
- If $a \in S$ has exactly 2 prime divisors, then each must have a divisor from the set $\{2, 3, 5, 7\}$. Thus, there are at most 4 such numbers. [1 point]
- If a ∈ S has 3 prime divisors, then there is at most one other element of S with more than one prime divisor, except in the special cases when S = {66, 91, 85, …}, {66, 91, 85, …}, {66, 91, 95, …}, {78, 77, 85, …}, or {78, 77, 95, …}. [1 point]
- If p > 50, then $p \in S$. [1 point]

Good attempts:

Good attempts that don't conform to the officials solutions can gain at most **2 points**. Making correct claims that are vital to solving the problem may be awarded **1 point**.

Demonstrating an intuitive strategy (regardless of final answers) may be awarded up to 4 points.

Note: other solution path ways may exist so the scheme is still open for discussion depending on the need.

Problem 4:

Let Ω be a circle with center O with P, a point lying outside. Tangents from P are drawn to touch the circle at A and B. A point, T is arbitrary chosen on major arc AB, and D is the foot of T on AB. K, L, M, N are the mid points of TA, TB, TD, AB respectively. PT intersects MN at point S. Lines l_a and l_b are the reflection of OA and OB over the angle bisectors of $\angle SAL$ and $\angle SBK$, respectively. Show that l_a, l_b and TD are concurrent.

Full Solution:

Every full solution deserves 7 points.

• 1 minor error. [-1 points]

Or

• 2 or 3 minor errors. [-2 points]

Partial Solution:

Partial solutions can gain up to a maximum of **5 points**. The following are additive:

- Applying claim as in solution 1. [2 points]
- Proving claim as in solution 1. [5 points] The breakdown is as follows:

-Introducing point P'. [1 point] -Show that D, S, P' are collinear. [1 point] -Introduce point K' and apply Menalaus's theorem. [1 point] -Show that $\frac{K'A}{AB} = \frac{KT}{TB}$. [1 point] -Show that $\Delta K'AB$ and ΔKTB are similar. [1 point]

- Stating clearly (without proof) Lemma 1. [1 point]
- Stating Lemma 2. [0 points]
- Applying Lemma 1 and Lemma 2 (after claiming/stating them) to conclude. [1 point]
- Proving Lemma 2 as in solution 2. [1 point]
- Proving Lemma 1 as in solution 2. [4 points] The breakdown is as follows:

-Proving part (i). [1 point]
-Getting equation 5 (or something comparable). [1 point]
-Getting equation 6 (after equation 5), or something comparable. [1 point]
-Completing the proof. [1 point]

Good Attempts:

Good attempts that don't conform to the officials solutions can gain at most **2 points**. Making correct claims that are vital to solving the problem may be awarded **1 point**.