

SMC Round 2, 2022
Problems, Solutions and Marking Scheme

By Onah Pius Aje
For SMA
December 13, 2022

1 Problems

Problem 1:

Let $n \in \mathbb{N}$. Prove that

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n} x_{i}}+\sqrt{\sum_{i=1}^{n} y_{i}}}
$$

$\forall x_{i}, y_{i} \in \mathbb{R}^{+}, i=1,2, \cdots, n$.

Problem 2:

Find all triples of prime numbers (p, q, r), such that $q \mid r-1$, and

$$
\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}
$$

is prime.

Problem 3:

The numbers $2,3,4, \cdots, 100$ are written on a board. Chibuike and Ismail play a game of erasing numbers from the board using the following rule: If the number, a, is erased, then only numbers, b, such that $\operatorname{gcd}(a, b)=1$, can be erased in subsequent turns.
The game ends when no such b exists, to be erased, and the person that erased last wins.
If Chibuike starts the game, does there exist a winning strategy for him? (Determine with proof.)

Problem 4:

Let Ω be a circle with center O with P, a point lying outside. Tangents from P are drawn to touch the circle at A and B. A point, T is arbitrary chosen on major arc $A B$, and D is the foot of T on $A B . K, L, M, N$ are the mid points of $T A, T B, T D, A B$ respectively. $P T$ intersects $M N$ at point S. Lines l_{a} and l_{b} are the reflection of $O A$ and $O B$ over the angle bisectors of $\angle S A L$ and $\angle S B K$, respectively. Show that l_{a}, l_{b} and $T D$ are concurrent.

2 Solutions

Problem 1:

Let $n \in \mathbb{N}$. Prove that

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n} x_{i}}+\sqrt{\sum_{i=1}^{n} y_{i}}}
$$

$\forall x_{i}, y_{i} \in \mathbb{R}^{+}, i=1,2, \cdots, n$.

Solution 1

Let $A M\left(a_{i}\right), H M\left(a_{i}\right), Q M\left(a_{i}\right)$ denote the arithmetic mean, the harmonic mean, and the quadratic mean respectively, of $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{R}^{+}$. Then it follows that $Q M\left(a_{i}\right) \geq A M\left(a_{i}\right) \geq H M\left(a_{i}\right)>0$.

Thus,

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}=A M\left(\frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}\right) \\
\geq H M\left(\frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}\right)=\frac{1}{A M\left(\sqrt{x_{i}}+\sqrt{y_{i}}\right)}=\frac{1}{A M\left(\sqrt{x_{i}}\right)+A M\left(\sqrt{y_{i}}\right)} \\
\geq \frac{1}{Q M\left(\sqrt{x_{i}}\right)+Q M\left(\sqrt{y_{i}}\right)}=\frac{1}{\sqrt{A M\left(x_{i}\right)}+\sqrt{A M\left(y_{i}\right)}}=\frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n x_{i}}+\sqrt{\sum_{i=1}^{n} y_{i}}}} .
\end{gathered}
$$

Solution 2 (Induction)

CLAIM: Let $\alpha \in[0,1]$ and let $x, y, X, Y \in \mathbb{R}^{+}$. Then

$$
\frac{\alpha}{\sqrt{X}+\sqrt{Y}}+\frac{1-\alpha}{\sqrt{x}+\sqrt{y}} \geq \frac{1}{\sqrt{\alpha X+(1-\alpha) x}+\sqrt{\alpha Y+(1-\alpha) y}}
$$

Proof 1 of claim:

Fix $x, y, X, Y \in \mathbb{R}^{+}$and consider the function in α :

$$
F(\alpha)=f(\alpha)-\frac{1}{g(\alpha)}
$$

where

$$
f(\alpha)=\left(\frac{\alpha}{\sqrt{X}+\sqrt{Y}}+\frac{1-\alpha}{\sqrt{x}+\sqrt{y}}\right), g(\alpha)=\sqrt{\alpha X+(1-\alpha) x}+\sqrt{\alpha Y+(1-\alpha) y}
$$

Observe that $F(0)=F(1)=0$, so it is enough to show that F is concave.
First observe that f is linear and g is concave since

$$
g^{\prime \prime}(\alpha)=-\frac{(X-x)^{2}}{4 \sqrt{\alpha X+(1-\alpha) x}^{3}}-\frac{(Y-y)^{2}}{4 \sqrt{\alpha Y+(1-\alpha) y}^{3}} \leq 0
$$

Indeed,

$$
F^{\prime}(\alpha)=f^{\prime}(\alpha)+\frac{g^{\prime}(\alpha)}{g(\alpha)^{2}} \Longrightarrow F^{\prime \prime}(\alpha)=0+\frac{g^{\prime \prime}(\alpha)}{g(\alpha)^{2}}-\frac{2 g^{\prime}(\alpha)^{2}}{g(\alpha)^{3}} \leq 0 .
$$

Proof 2 of claim:

Let $h: \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}_{+}$be given by

$$
h(x, y):=\frac{1}{\sqrt{x}+\sqrt{y}} .
$$

This can be viewed as a surface in 3D.
Then the claim can be written as

$$
\alpha h(X, Y)+(1-\alpha) h(x, y) \geq h[\alpha X+(1-\alpha) x, \alpha Y+(1-\alpha] y)=h[\alpha(X, Y)+(1-\alpha)(x, y)] .
$$

That is, h is convex by Jensen's inequality. This equivalent to checking that the Hessian of h is positive definite.
The Hessian is given by

$$
H(h)=\left(\begin{array}{ll}
h_{x x} & h_{x y} \\
h_{y x} & h_{y y}
\end{array}\right) .
$$

I leave the rest of the working to the reader.
Now, we are ready to proceed via induction on n.

- $n=1$: This is trivial as we have equality.
- $n=2$: RTP:

$$
\frac{1}{2}\left(\frac{1}{\sqrt{x_{1}}+\sqrt{y_{1}}}+\frac{1}{\sqrt{x_{2}}+\sqrt{y_{2}}}\right) \geq \frac{\sqrt{2}}{\sqrt{x_{1}+x_{2}}+\sqrt{y_{1}+y_{2}}} .
$$

To see this, take $\alpha=\frac{1}{2}, X=x_{1}, Y=y_{1}, x=x_{2}, y=y_{2}$ in claim.

- Assume true for $n=k$, some $k \geq 2$:

$$
S=\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{k}}{\sqrt{\sum_{i=1}^{k} x_{i}}+\sqrt{\sum_{i=1}^{k} y_{i}}}
$$

- Show for $n=k+1$: RTP

$$
\frac{1}{k+1} \sum_{i=1}^{k+1} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{k+1}}{\sqrt{\sum_{i=1}^{k+1} x_{i}}+\sqrt{\sum_{i=1}^{k+1} y_{i}}}
$$

Now let $x=x_{k+1}, y=y_{k+1}$, and

$$
X=\frac{1}{k} \sum_{i=1}^{k} x_{i}, Y=\frac{1}{k} \sum_{i=1}^{k} y_{i} .
$$

So,
$L H S=\frac{1}{k+1} \sum_{i=1}^{k+1} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}=\frac{1}{k+1}\left(k S+\frac{1}{\sqrt{x}+\sqrt{y}}\right) \geq \frac{1}{k+1}\left(\frac{k}{\sqrt{X}+\sqrt{Y}}+\frac{1}{\sqrt{x}+\sqrt{y}}\right)$,

$$
\geq \frac{\sqrt{k+1}}{\sqrt{k X+x}+\sqrt{k Y+y}}=R H S
$$

The first inequality follows from assume step, while the last inequality follows by taking $\alpha=\frac{k}{k+1}$ in claim.

Solution 3 (Partly induction)

CLAIM: Let $x, y, X, Y \in \mathbb{R}^{+}$. Then

$$
\frac{1}{\sqrt{X}+\sqrt{Y}}+\frac{1}{\sqrt{x}+\sqrt{y}} \geq \frac{2 \sqrt{2}}{\sqrt{X+x}+\sqrt{Y+y}}
$$

Proof 1 of claim:

Apply claim as in solution 2.

Proof 2 of claim:

Let $X=a^{2}, Y=b^{2}, x=c^{2}, y=d^{2}$. Then claim becomes

$$
\begin{aligned}
& \frac{1}{a+b}+\frac{1}{c+d} \geq \frac{2 \sqrt{2}}{\sqrt{a^{2}+c^{2}}+\sqrt{b^{2}+d^{2}}} \\
\Longleftrightarrow & \sqrt{a^{2}+c^{2}}+\sqrt{b^{2}+d^{2}} \geq \frac{2 \sqrt{2}(a+b)(c+d)}{a+b+c+d}
\end{aligned}
$$

Indeed,

$$
\sqrt{a^{2}+c^{2}}+\sqrt{b^{2}+d^{2}} \geq \frac{a+c+b+d}{\sqrt{2}} \geq \frac{2 \sqrt{2}(a+b)(c+d)}{a+b+c+d}
$$

The first in equality follows from QM-AM, while the second follows from AM-GM (after cross multiplication) or AM-HM (indirectly).

First, we prove the problem for $n=2^{m}$, some $m \in \mathbb{N}_{0}$, by induction on m.

- $m=0$: This is trivial as we have equality.
- $m=1:$ RTP:

$$
\frac{1}{2}\left(\frac{1}{\sqrt{x_{1}}+\sqrt{y_{1}}}+\frac{1}{\sqrt{x_{2}}+\sqrt{y_{2}}}\right) \geq \frac{\sqrt{2}}{\sqrt{x_{1}+x_{2}}+\sqrt{y_{1}+y_{2}}}
$$

This is exactly the same as claim.

- Assume true for $m=k$, some $k \geq 1$:

$$
\frac{1}{2^{k}} \sum_{i=1}^{2^{k}} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{2^{k}}}{\sqrt{\sum_{i=1}^{2^{k}} x_{i}}+\sqrt{\sum_{i=1}^{2^{k}} y_{i}}}
$$

- Show for $m=k+1$: RTP

$$
\frac{1}{2^{k+1}} \sum_{i=1}^{2^{k+1}} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{2^{k+1}}}{\sqrt{\sum_{i=1}^{2^{k+1}} x_{i}}+\sqrt{\sum_{i=1}^{2^{k+1} y_{i}}}}
$$

Indeed,

$$
\begin{aligned}
& \frac{1}{2^{k+1}} \sum_{i=1}^{2^{k+1}} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}=\frac{1}{2}\left\{\frac{1}{2^{k}} \sum_{i=1}^{2^{k}} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}}+\frac{1}{2^{k}} \sum_{i=1}^{2^{k}} \frac{1}{\sqrt{x_{i+2^{k}}}+\sqrt{y_{i+2^{k}}}}\right\} \\
& \geq \frac{1}{2}\left\{\frac{\sqrt{2^{k}}}{\sqrt{\sum_{i=1}^{2^{k}} x_{i}}+\sqrt{\sum_{i=1}^{2^{k} y_{i}}}}+\frac{\sqrt{2^{k}}}{\sqrt{\sum_{i=1}^{2^{k} x_{i+2^{k}}}}+\sqrt{\sum_{i=1}^{2^{k}} y_{i+2^{k}}}}\right\} \\
& =\frac{1}{2}\left\{\frac{1}{\sqrt{\frac{\sum_{i=1}^{2^{k}} x_{i}}{2^{k}}}+\sqrt{\frac{\sum_{i=1}^{2^{k}} y_{i}}{2^{k}}}}+\frac{1}{\sqrt{\frac{\sum_{i=1}^{2^{k} x_{i+2} k}}{2^{k}}}+\sqrt{\frac{\sum_{i=1}^{2^{k} y_{i+2^{k}} k}}{2^{k}}}}\right\} \\
& \geq \frac{\sqrt{2}}{\sqrt{\frac{\sum_{i=1}^{2^{k}} x_{i}}{2^{k}}+\frac{\sum_{i=1}^{2^{k}} x_{i+2^{k}}}{2^{k}}}+\sqrt{\frac{\sum_{i=1}^{2^{k}} y_{i}}{2^{k}}+\frac{\sum_{i=1}^{2^{k}} y_{i+2^{k}}}{2^{k}}}} \\
& =\frac{\sqrt{2^{k+1}}}{\sqrt{\sum_{i=1}^{2^{k+1}} x_{i}}+\sqrt{\sum_{i=1}^{2^{k+1} y_{i}}}} .
\end{aligned}
$$

The first inequality follows from assume step, while the last inequality follows from claim.

Next, we prove for general $n \neq 2^{m}$. We may assume $n<2^{m}$, some $m>1$. More specifically, we shall show that if the problem holds for some $n=k>3$, then it also holds for $n=k-1$. This is a finite downward induction.

The construction is quite straight forward. To prove for $n=k-1$, apply the case $n=k$ by taking x_{i} for $i=1,2, \cdots k-1$ as before, then take x_{k} as their arithmetic mean (same goes for y_{i}). The rest is easy deduction.

Problem 2:

Find all triples of prime numbers (p, q, r), such that $q \mid r-1$, and

$$
\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}
$$

is prime.

Solution

Let

$$
\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}=s
$$

then

$$
r\left(p^{q-1}-1\right)=s\left(q^{p-1}-1\right) .
$$

Note that

$$
r=s \Longleftrightarrow p^{q-1}-1=q^{p-1}-1 \Longleftrightarrow p^{q-1}=q^{p-1} \Longleftrightarrow p^{\frac{1}{p-1}}=q^{\frac{1}{q-1}} \Longleftrightarrow p=q
$$

To see the final step, take \ln and consider the function $f(x)=\frac{\ln (x)}{x-1}$. Then $f^{\prime}(x)=\frac{x-1-x \ln (x)}{x(x-1)^{2}}<0$ for $x>1$, since $x \ln (x)+1-x=\int_{1}^{x} \ln (t) \mathrm{d} t$.

In this case, need $q \mid r-1$. Thus we get solution (q, q, r), where r is an odd prime and q is a prime divisor of $r-1$.

Suppose $r \neq s$, then $p \neq q$. Thus by FLT, have

$$
\begin{aligned}
p \mid\left(q^{p-1}-1\right) & \Longrightarrow p \mid r\left(p^{q-1}-1\right) \\
q \mid\left(p^{q-1}-1\right) & \Longrightarrow q \mid s\left(q^{p-1}-1\right)
\end{aligned} \Longrightarrow^{\prime}, q \mid s .
$$

Therefore, $p=r, q=s$.
Need $p^{q}-p=q^{p}-q$ and $q \mid p-1$.
Consider the function $g(x)=q^{x}-q-x^{q}+x$.
Have $g(q)=0$ and $g^{\prime}(x)=q^{x} \ln (q)-q x^{q-1}+1>q\left[q^{x-1}-x^{q-1}\right]>0$ for $x>q \geq 3$. That is, g is strictly increasing (and hence positive) in the interval ($q,+\infty$), when $q \geq 3$.
However, $g(p)=0, p>q$. Thus, $q=2$.
Now for $q=2$, have $g(4)=2$ and $g^{\prime}(x)=2^{x} \ln (2)-2 x+1>2^{x-1}-2 x=\int_{4}^{x}\left[2^{t-1} \ln (2)-2\right] \mathrm{d} t \geq 0$ for $x \geq 4$. That is, g is strictly increasing (and hence positive) in the interval $[4,+\infty)$.
Again, $g(p)=0, p \geq 3$, so we conclude that $p=3$.
Therefore, $p=r=3, q=2$.

Note 1:

The first inequality may be avoided by taking the two cases: $p=q$ and $p \neq q$, as opposed to taking cases $r=s$ and $r \neq s$ as in the proof above.

Note 2:

Since the domains can be restricted to positive integers, the above inequalities can also be shown using induction or standard inequality. The induction approach is standard, so I will only present the standard inequality application in the case of $p^{q}-p=q^{p}-q, q \mid p-1$:

If $q \geq 3$.
Then $p^{q}>p^{q}-p=q^{p}-q>q^{p-1}$. Thus $p>q^{\frac{p-1}{q}}$. (This still holds in the case of $p^{q-1}=q^{p-1}$.) $q \mid p-1 \Longrightarrow p=2 q k+1$, for some $k \geq 1$.
So $2 k q+1=p>q^{2 k} \Longrightarrow 2 k \geq q^{2 k-1} \geq 1+(q-1)\left(q^{2 k-2}+q^{2 k-2}+\cdots+q+1\right) \geq 1+2(2 k-1)$. This is a contradiction.

If $q=2$. (Then $p \geq 3$.)
First, $n \geq 1 \Longrightarrow 2^{n}=2\left(1+1+2+4+\cdots+2^{n-3}+2^{n-2}\right) \geq 2 n$.
Hence,
$p\left(\frac{p-1}{2}\right)=2^{p-1}-1=\left(2^{\frac{p-1}{2}}+1\right)\left(2^{\frac{p-1}{2}}-1\right) \geq\left(2\left(\frac{p-1}{2}\right)+1\right)\left(2\left(\frac{p-1}{2}\right)-1\right)=p(p-2)$.
So, $p=3$.

Problem 3:

The numbers $2,3,4, \cdots, 100$ are written on a board. Chibuike and Ismail play a game of erasing numbers from the board using the following rule: If the number, a, is erased, then only numbers, b, such that $\operatorname{gcd}(a, b)=1$, can be erased in subsequent turns.
The game ends when no such b exists, to be erased, and the person that erased last wins.
If Chibuike starts the game, does there exist a winning strategy for him? (Determine with proof.)

Solution

Chibuike (the first player) has a wining strategy as follows:

First note that every pair of numbers erased will be coprime. Let S denote the set of these numbers and let p denote a prime. This implies that

- If $a \in S$ and $p \mid a$, then $p<100$. There are exactly 25 such primes.
- If $p<100$, then there exists exactly one $a \in S$ such that $p \mid a$.
- If $a \in S$, then there are at most 3 primes satisfying $p \mid a$. Moreover, they form one of the sets $\{2,3,11\},\{2,3,13\}$, or a subset of $\{2,3,5,7\}$. Thus only one such number can belong to S.
- If $a \in S$ has exactly 2 prime divisors, then each must have a divisor from the set $\{2,3,5,7\}$. Thus, there are at most 4 such numbers.
- If $a \in S$ has 3 prime divisors, then there is at most one other element of S with more than one prime divisor, except in the special cases when $S=\{66,91,85, \cdots\},\{66,91,85, \cdots\},\{66,91,95, \cdots\},\{78,77,85, \cdots\}$, or $\{78,77,95, \cdots\}$.
- If $p>50$, then $p \in S$.

In what follows, we present a simple strategy:
To begin the game, Chibuike erases $14=2 \cdot 7$.

- If Ismail erases 3^{a}, then Chibuike will erase 55 .
- If Ismail erases 5^{a}, then Chibuike will erase 33 .
- If Ismail erases $3^{a} 5^{b}$, then Chibuike will erase 11.
- If Ismail erases $3^{a} p$, where $p>10$ is prime, then Chibuike will erase 5 .
- If Ismail erases $5 p$, where $p>10$ is prime, then Chibuike will erase 3 .
- If Ismail erases $p>10$, the Chibuike will erase 15 .

After this, no player can erase a number that is a multiple of $2,3,5$ or 7 , so it must be prime greater than 10 .

Since 5 primes have been used up so far, the remaining 20 primes ensures that Chibuike erases the last prime.

Note that in the strategy above, the role of 2 and 3 can be swapped. Same goes for 5 and 7, and also for 11 and 13 .

Problem 4:

Let Ω be a circle with center O with P, a point lying outside. Tangents from P are drawn to touch the circle at A and B. A point, T is arbitrary chosen on major $\operatorname{arc} A B$, and D is the foot of T on $A B . K, L, M, N$ are the mid points of $T A, T B, T D, A B$ respectively. $P T$ intersects $M N$ at point S. Lines l_{a} and l_{b} are the reflection of $O A$ and $O B$ over the angle bisectors of $\angle S A L$ and $\angle S B K$, respectively. Show that l_{a}, l_{b} and $T D$ are concurrent.

Solution 1

CLAIM: $B S$ is the reflection of $B K$ on the angle bisector of $\angle A B T$, which in turn is equal to the angle bisector of $\angle S B K$. Similarly, $A S$ is the reflection of $A L$ on the angle bisector of $\angle B A T$, which in turn is equal to the angle bisector of $\angle S A L$.

Proof. Let P^{\prime} be the reflection of P on $A B$. Then $P P^{\prime}$ is parallel to $T D, N$ is midpoint of $P P^{\prime}$, M is midpoint of $T D, P S T$ is collinear, and $N S M$ is collinear. Thus, by homothethy, have $P^{\prime} S D$
is also collinear and $\frac{D S}{S P^{\prime}}=\frac{D T}{P P^{\prime}}$.
Now, let K^{\prime} be the point of intersection of $B S$ and $A P^{\prime}$. We shall show that $\frac{K^{\prime} A}{A B}=\frac{K T}{T B}$. Since $\angle K^{\prime} A B=\angle P A B=\angle K T B$, it will follow from side S-A-S criteria that $\Delta K^{\prime} A B$ and $\triangle K T B$ are similar, so that $\angle A B S=\angle K^{\prime} B A=\angle K B T$ as desired.

Indeed, Menalaus's theorem applied to line $B S K^{\prime}$ in $\Delta P^{\prime} A D$ gives

$$
\begin{gathered}
1=\frac{A B}{B D} \cdot \frac{D S}{S P^{\prime}} \cdot \frac{P^{\prime} K^{\prime}}{K^{\prime} A}=\frac{A B}{B D} \cdot \frac{D T}{P P^{\prime}} \cdot \frac{P^{\prime} K^{\prime}}{K^{\prime} A}=\frac{2 A N}{B D} \cdot \frac{D T}{2 P N} \cdot \frac{P^{\prime} A-K^{\prime} A}{K^{\prime} A} \\
\Longrightarrow 1=\frac{A N}{P N} \cdot \frac{D T}{B D} \cdot \frac{P A-K^{\prime} A}{K^{\prime} A}=\frac{\tan (\angle A B T)}{\tan (\angle B A P)} \cdot \frac{P A-K^{\prime} A}{K^{\prime} A} \\
\Longrightarrow 1=\frac{A N \sin (\angle A B T)-K^{\prime} A \sin (\angle A B T) \cos (\angle B A P)}{K^{\prime} A \sin (\angle B A P) \cos (\angle A B T)} \\
\Longrightarrow K^{\prime} A \sin (\angle B A P+\angle A B T)=\frac{1}{2} A B \sin (\angle A B T) \\
\Longrightarrow \frac{K^{\prime} A}{A B}=\frac{\frac{1}{2} \sin (\angle A B T)}{\sin (\angle B A T)}=\frac{K T}{T B} .
\end{gathered}
$$

Using the claim, we have that l_{a} and l_{b} are the reflection of $O A$ and $O B$ over the angle bisectors of $\angle B A T$ and $\angle A B T$, respectively. This implies that l_{a} and l_{b} are the altitudes of $\triangle A B T$ from A and B respectively. The third altitude is $T D$ so it follows that l_{a}, l_{b} and $T D$ are concurrent.

Solution 2

Lemma 1:

In a triangle $A B C$ with D, E, F midpoints of sides $B C, C A$ and $A B$ respectively, let J, K, L be points on $E F, F D$ and $D E$ respectively, such that $A J \perp E F, B K \perp F D$ and $C L \perp D E$.
(i) $D J, E K$ and $F L$ are concurrent.
(ii) Suppose the point of concurrency in (i) is X, then $A X$ is the A-symmedian in triangle $A B C$. Furthermore, this will imply that X is the concurrency point of the symmedians in triangle $A B C$ since B or C can take the place of A. Hence, we have 6 concurrent lines. (Symmedian is the reflection of the median over the angle bisector of the respective angle)

Proof:

D, E, F are the midpoints of sides $B C, C A$ and $A B$ respectively, hence we have $E F\|B C, F D\|$ $C A, D E \| A B$. Let $A J$ intersect $B C$ at $P, B K$ intersect $C A$ at Q and $C L$ intersect $A B$ at R. Since $A J \perp E F, B K \perp F D$ and $C L \perp D E$, we have that $A P \perp B C, B Q \perp C A$ and $C R \perp A B$ (They are altitudes in triangle $A B C$). It is well known that the altitudes of a triangle are concurrent, therefore, $A P, B Q$ and $C R$ are concurrent, hence by Ceva's theorem, we have that

$$
\frac{|A R|}{|R B|} \cdot \frac{|B P|}{|P C|} \cdot \frac{|C Q|}{|Q A|}=1 .
$$

Also, from $E F\|B C, F D\| C A, D E \| A B$, we have the following ratio equalities:

$$
\frac{|B P|}{|P C|}=\frac{|F J|}{|J E|}, \frac{|C Q|}{|Q A|}=\frac{|D K|}{|K F|} \text { and } \frac{|A R|}{|R B|}=\frac{|E L|}{|L D|} .
$$

Multiplying these ratios gives,

$$
\frac{|D K|}{|K F|} \cdot \frac{|F J|}{|J E|} \cdot \frac{|E L|}{|L D|}=\frac{|A R|}{|R B|} \cdot \frac{|B P|}{|P C|} \cdot \frac{|C Q|}{|Q A|}=1 .
$$

Hence, we have $\frac{|D K|}{|K F|} \cdot \frac{|F J|}{|J E|} \cdot \frac{|E L|}{|L D|}=1$ and by Ceva's theorem again, we have that $D J, E K$ and $F L$ are concurrent. This completes the proof for (i). By Sine rule on triangle $A X E$, we have

$\sin (\angle X A E)=\frac{\sin (\angle A E X)}{|A X|} \cdot|E X|$.
Similarly, by Sine rule on triangle $A X F, \sin (\angle X A F)=\frac{\sin (\angle A F X)}{|A X|} \cdot|F X|$.
These two equations combine to give

$$
\begin{equation*}
\frac{\sin (\angle X A E)}{\sin (\angle X A F)}=\frac{|E X| \sin (\angle A E X)}{|F X| \sin (\angle A F X)} \tag{1}
\end{equation*}
$$

From sine rule on triangle $D K E, \sin (\angle D K E)=\frac{\sin (\angle E D K)}{|E K|} \cdot|D E|$.
Analogously, from triangle $D L F, \sin (\angle D L F)=\frac{\sin (\angle F D L)}{|F L|} \cdot|D F|$.
Combining the last two equations, noting that $\angle E D K=\angle F D L$, we have,

$$
\frac{\sin (\angle D K E)}{\sin (\angle D L F)}=\frac{|D E||F L|}{|D F||E K|}
$$

Recall that $E F\|B C, F D\| C A, D E \| A B$, hence $A E D F$ is a parallelogram and $\angle A E X=$ $\angle D K E, \angle A F X=\angle D L F$. This gives

$$
\frac{\sin (\angle A E X)}{\sin (\angle A F X)}=\frac{|D E||F L|}{|D F||E K|} .
$$

Hence, (1) becomes

$$
\begin{equation*}
\frac{\sin (\angle X A E)}{\sin (\angle X A F)}=\frac{|E X| \sin (\angle A E X)}{|F X| \sin (\angle A F X)}=\frac{|E X||D E||F L|}{|F X||D F||E K|} \tag{2}
\end{equation*}
$$

We apply Extended Law of Sines on triangle $A B C$.
Let the circumradius of triangle $A B C$ be R units. This gives us that $|B C|=2 R \sin A,|C A|=$ $2 R \sin B$ and $|A B|=2 R \sin C$ where $\angle C A B=A, \angle A B C=B$ and $\angle B C A=C$.
From right angled triangle $A C R,|A R|=2 R \sin B \cos A$.
From $E D \| A B$ we have that $\triangle A C R \sim \triangle E C L$.
Hence $\frac{|E L|}{|A R|}=\frac{|E C|}{|A C|}=\frac{1}{2}$ (Since E is the midpoint of $C A$)

$$
\begin{equation*}
\Longrightarrow|E L|=R \sin B \cos A . \tag{3}
\end{equation*}
$$

Analogously, for $|F K|$, we have that from right angled triangle $A B Q,|A Q|=2 R \sin C \cos A$.
From $F D \| A C$ we have that $\triangle A B Q \sim \triangle F B K$.
Hence $\frac{|F K|}{|A Q|}=\frac{|F B|}{|A B|}=\frac{1}{2}$ (Since F is the midpoint of $A B$)

$$
\begin{equation*}
\Longrightarrow|F K|=R \sin C \cos A . \tag{4}
\end{equation*}
$$

Since $A E D F$ is a parallelogram, we have that $|A F|=|D E|$ and $|A E|=\mid D F$, hence $|D E|=R \sin C$ and $|D F|=R \sin B$.
Equation (2) then becomes

$$
\begin{equation*}
\frac{\sin (\angle X A E)}{\sin (\angle X A F)}=\frac{|E X||F L| \sin C}{|F X||E K| \sin B} \tag{5}
\end{equation*}
$$

In triangle $E K F$, we have that $\angle K F E=\angle F E A(F D \| C A) \angle F E A=\angle B C A=C(E F \| B C)$.
Now, applying Sine rule,

$$
\frac{\sin (\angle K F E)}{\sin (\angle F E K)}=\frac{|E K|}{|F K|} \Longrightarrow \frac{\sin C}{\sin (\angle F E K)}=\frac{|E K|}{|F K|} .
$$

Similarly, in triangle $E L F$, we have that $\angle L E F=\angle E F A(D E \| A B), \angle E F A=\angle A B C=B$ $(E F \| B C)$.
Now, applying Sine rule,

$$
\frac{\sin (\angle L E F)}{\sin (\angle E F L)}=\frac{|F L|}{|E L|} \Longrightarrow \frac{\sin B}{\sin (\angle E F L)}=\frac{|F L|}{|E L|} .
$$

Combining the last two lines of equality, we have

$$
\frac{|F L|}{|E K|}=\left(\frac{\sin B}{\sin C}\right) \frac{|E L| \sin (\angle F E K)}{|F K| \sin (\angle E F L)} .
$$

From (3) and (4) we further get that

$$
\frac{|F L|}{|E K|}=\left(\frac{\sin B}{\sin C}\right)^{2} \frac{\sin (\angle F E K)}{\sin (\angle E F L)}
$$

Hence (5) gives

$$
\frac{\sin (\angle X A E)}{\sin (\angle X A F)}=\left(\frac{\sin B}{\sin C}\right)\left(\frac{|E X| \sin (\angle F E K)}{|F X| \sin (\angle E F L)}\right) .
$$

But, from Sine rule on triangle $E F X$, we have that $\frac{|E X| \sin (\angle F E X)}{|F X| \sin (\angle E F X)}=1$, but $\sin (\angle F E K)=$ $\sin (\angle F E X)$ and $\sin (\angle E F L)=\sin (\angle E F X)$, hence $\frac{|E X| \sin (\angle F E K)}{|F X| \sin (\angle E F L)}=\frac{|E X| \sin (\angle F E X)}{|F X| \sin (\angle E F X)}=1$.
Hence, we have

$$
\begin{equation*}
\frac{\sin (\angle X A E)}{\sin (\angle X A F)}=\frac{\sin B}{\sin C} \tag{6}
\end{equation*}
$$

Now, finally, we compute $\frac{\sin (\angle D A B)}{\sin (\angle D A C)}$. Applying Sine rule to triangle $A B D$, we have that $\sin (\angle D A B)=$ $\frac{\sin B}{|A D|}|B D|$ and applying Sine rule to triangle $A C D$, we have that $\sin (\angle D A C)=\frac{\sin C}{|A D|}|C D|$. Dividing and noting that $|B D|=|C D|$ we get

$$
\frac{\sin (\angle D A B)}{\sin (\angle D A C)}=\frac{\sin B}{\sin C}
$$

. Hence, we have that

$$
\frac{\sin (\angle X A E)}{\sin (\angle X A F)}=\frac{\sin (\angle D A B)}{\sin (\angle D A C)} .
$$

But $\angle X A E+\angle X A F=\angle D A B=\angle D A C=A$. Consider the following:

$$
\frac{\sin (X-a)}{\sin a}=\frac{\sin (X-b)}{\sin b} .
$$

Observe that $X-a+a=X-b+b=X$

$$
\begin{aligned}
\frac{(\sin X \cos a-\sin a \cos X)}{\sin a}= & \frac{(\sin X \cos b-\sin b \cos X)}{\sin b} \Longrightarrow \sin X \cot a-\cos X=\sin X \\
& \cot b-\cos X \Longrightarrow \cot a=\cot b
\end{aligned}
$$

Using this, we can conclude that $\cot (\angle X A E)=\cot (\angle D A B)$ and $\cot (\angle X A F)=\cot (\angle D A C)$ and hence, $\angle X A E=\angle D A B, \angle X A F=\angle D A C(\cot (x)$ is injective in the range $(0, \pi))$. This implies that $A X$ is the A-symmedian in triangle $A B C$. Similarly, $B X$ is the B-symmedian and $C X$ is the C-symmedian and X is the concurrency point of the symmedians in triangle $A B C$. This completes the proof of the lemma.

Lemma 2 Let the tangents to the circumcircle of triangle $A B C$ at B and C meet at T. $A T$ is the A-symmedian of triangle $A B C$. Proof is overlooked as this lemma is quite well known.

Now to the problem. By Lemma 2, TP is the T-symmedian of triangle $A B T$. Since K, L and M are midpoints of $T A, T B$ and $T D$ respectively, we have that K, L and M are collinear and $K L \| A B$. By Lemma $1, S$ is the point of concurrency of the symmedians in triangle $A B T$. Hence, $A S$ is the reflection of $A L$ over the angle bisector of $\angle T A B$, and therefore, the angle bisector of $\angle S A L$ is the same line as the angle bisector of $\angle T A B$. Analogously, $B S$ is the reflection of BK

over the angle bisector of $\angle T B A$, and therefore, the angle bisector of $\angle S B K$ is the same line as the angle bisector of $\angle T B A$. Now, the reflection of $O A$ over the angle bisector of $\angle T A B$ is the altitude from A in triangle $A B T$. Likewise, the reflection of $O B$ over the angle bisector of $\angle T B A$ is the altitude from B in triangle $A B T$. Hence, l_{a}, l_{b} and $T D$ are altitudes in triangle $A B T$ and are hence concurrent. qed

3 Marking Scheme

Problem 1: (7 points)
Prove that

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n} x_{i}}+\sqrt{\sum_{i=1}^{n} y_{i}}}
$$

$\forall x_{i}, y_{i} \in \mathbb{R}^{+}, i=1,2, \cdots, n$.

Full Solution:

Every full solution deserves $\mathbf{7}$ points.

- 1 minor error. [-1 points]

Or

- 2 or 3 minor errors. [-2 points]

Partial Solution:

Partial solutions can gain up to a maximum of $\mathbf{5}$ points. The following are additive:

- Applying AM-HM inequality properly as in solution 1. [3 points]
- Applying QM-AM inequality properly as in solution 1. [3 points]
- Proving for the case $n=2$ without proving claim as in solution 2. [3 points]
- Proving claim as in solution 2. [5 points]
- Checking the case $n=1$ as in solutions $2 \& 3$. [$\mathbf{0}$ points]
- Proving for the case $n=2^{m}$ by assuming for the case $n=2$ as in solution 3. [2 points]
- Proving for the case $n \neq 2^{m}$ by assuming for the case $n=2^{m}$ as in solution 3. [2 points]

Good Attempts:

Good attempts that don't conform to the officials solutions can gain at most 2 points. Making correct claims that are vital to solving the problem may be awarded 1 point.

Problem 2: (7 points)

Find all triples of prime numbers (p, q, r), such that $q \mid r-1$, and

$$
\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}
$$

is prime.

Full Solution:

Every full solution deserves $\mathbf{7}$ points.

- 1 minor error. [-1 points]

Or

- 2 or 3 minor errors. [-2 points]

Partial Solution:

Partial solutions can gain up to a maximum of $\mathbf{5}$ points. The following are additive:

- Observing the set of solutions (q, q, r). [1 point]

Or
Deducing the set of solutions (q, q, r) such that $r \geq 3, q \mid r-1$ from the case $p=q$. [2 points]

Or
Deducing the set of solutions (q, q, r) such that $r \geq 3, q \mid r-1$ from the case $r=s$. [$\mathbf{3}$ points]

- Deducing the set of solutions (q, q, r) without stating $r \geq 3, q \mid r-1$. [-1 point]
- Stating the solution $(3,2,3)$. [$\mathbf{1}$ points]
- Deducing $p^{q}-p=q^{p}-q, q \mid p-1$ by applying FLT (or otherwise), in the case $r \neq s, p \neq q$. [$\mathbf{1}$ points]
Note: Not points for only using FLT once.
- Showing that $(p, q)=(3,2)$ is the only solution to $p^{q}-p=q^{p}-q, q \mid p-1$ in the case $q=2$. [2 points]
- Showing that no solution to $p^{q}-p=q^{p}-q, q \mid p-1$ in the case $q \geq 3$. [2 points]

Good Attempts:

Good attempts that don't conform to the officials solutions can gain at most 2 points.
Making correct claims that are vital to solving the problem may be awarded $\mathbf{1}$ point.

Problem 3:

The numbers $2,3,4, \cdots, 100$ are written on a board. Chibuike and Ismail play a game of erasing numbers from the board using the following rule: If the number, a, is erased, then only numbers, b, such that $\operatorname{gcd}(a, b)$, can be erased in subsequent turns.
The game ends when no such b exists, to be erased, and the person that erased last wins.
If Chibuike starts the game, does there exist a winning strategy? If yes, whom? (Determine with proof.)

Full Solution:

Every full solution deserves $\mathbf{7}$ points.

- 1 minor error. [-1 points]

Or

- 2 or 3 minor errors. [-2 points]

Good Approach:

Good approaches can gain up to a maximum of 4 points. The following are additive:
Points are gained by showing

- If $a \in S$ and $p \mid a$, then $p<100$. There are exactly 25 such primes. [$\mathbf{1}$ point]
- If $p<100$, then there exists exactly one $a \in S$ such that $p \mid a$. [$\mathbf{1}$ point]
- If $a \in S$, then there are at most 3 primes satisfying $p \mid a$. Moreover, they form one of the sets $\{2,3,11\},\{2,3,13\}$, or a subset of $\{2,3,5,7\}$. Thus only one such number can belong to S. [1 point]
- If $a \in S$ has exactly 2 prime divisors, then each must have a divisor from the set $\{2,3,5,7\}$. Thus, there are at most 4 such numbers. [1 point]
- If $a \in S$ has 3 prime divisors, then there is at most one other element of S with more than one prime divisor, except in the special cases when
$S=\{66,91,85, \cdots\},\{66,91,85, \cdots\},\{66,91,95, \cdots\},\{78,77,85, \cdots\}$, or $\{78,77,95, \cdots\} .[\mathbf{1}$ point]
- If $p>50$, then $p \in S$. [$\mathbf{1}$ point]

Good attempts:

Good attempts that don't conform to the officials solutions can gain at most 2 points. Making correct claims that are vital to solving the problem may be awarded 1 point.

Demonstrating an intuitive strategy (regardless of final answers) may be awarded up to 4 points.

Note: other solution path ways may exist so the scheme is still open for discussion depending on the need.

Problem 4:

Let Ω be a circle with center O with P, a point lying outside. Tangents from P are drawn to touch the circle at A and B. A point, T is arbitrary chosen on major $\operatorname{arc} A B$, and D is the foot of T on $A B . K, L, M, N$ are the mid points of $T A, T B, T D, A B$ respectively. $P T$ intersects $M N$ at point S. Lines l_{a} and l_{b} are the reflection of $O A$ and $O B$ over the angle bisectors of $\angle S A L$ and $\angle S B K$, respectively. Show that l_{a}, l_{b} and $T D$ are concurrent.

Full Solution:

Every full solution deserves 7 points.

- 1 minor error. [-1 points]

Or

- 2 or 3 minor errors. [-2 points]

Partial Solution:

Partial solutions can gain up to a maximum of 5 points. The following are additive:

- Applying claim as in solution 1. [2 points]
- Proving claim as in solution 1. [5 points]

The breakdown is as follows:
-Introducing point P^{\prime}. [1 point]
-Show that D, S, P^{\prime} are collinear. [1 point]
-Introduce point K^{\prime} and apply Menalaus's theorem. [1 point]
-Show that $\frac{K^{\prime} A}{A B}=\frac{K T}{T B}$. [1 point]
-Show that $\Delta K^{\prime} A B$ and $\Delta K T B$ are similar. [1 point]

- Stating clearly (without proof) Lemma 1. [1 point]
- Stating Lemma 2. [0 points]
- Applying Lemma 1 and Lemma 2 (after claiming/stating them) to conclude. [1 point]
- Proving Lemma 2 as in solution 2. [1 point]
- Proving Lemma 1 as in solution 2. [4 points]

The breakdown is as follows:
-Proving part (i). [1 point]
-Getting equation 5 (or something comparable). [1 point]
-Getting equation 6 (after equation 5), or something comparable. [1 point]
-Completing the proof. [1 point]

Good Attempts:

Good attempts that don't conform to the officials solutions can gain at most $\mathbf{2}$ points.
Making correct claims that are vital to solving the problem may be awarded 1 point.

