Instructions in addition to the ones given in Finalists' Orientation meeting
Duration is 4 hours.
Use white plane A4 papers for your work and write your name on each paper you submit
Proofs should be provided for all lemmas used and all theorems used should be properly named and stated.

Problem 1: Let $n \in \mathbb{N}$. Prove that

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i}}+\sqrt{y_{i}}} \geq \frac{\sqrt{n}}{\sqrt{\sum_{i=1}^{n} x_{i}}+\sqrt{\sum_{i=1}^{n} y_{i}}}
$$

$\forall x_{i}, y_{i} \in \mathbb{R}^{+}, i=1,2, \ldots, n$.
Problem 2: Find all triples of prime numbers (p, q, r), such that $q \mid(r-1)$ and

$$
\frac{r\left(p^{q-1}-1\right)}{q^{p-1}-1}
$$

Is prime.
Problem 3: The numbers $2,3,4, \ldots, 100$ are written on a board. Chibuike and Ismail play a game of erasing numbers from the board using the following rule: If the number, a, is erased, then only numbers, b, such that $\operatorname{gcd}(a, b)=1$, can be erased, and the person that erased last wins. If Chibuike starts the game, does there exist a winning strategy for him? (Determine with proof.)

Problem 4: Let Ω be a circle with center O and P a point outside it. Tangents from P are drawn to touch the circle at A and B. A point, T, is arbitrarily chosen on major arc $A B$, and D is the foot of T on $A B . K, L, M, N$ are the midpoints of $T A, T B, T D, A B$ respectively. $P T$ intersects $M N$ at point S. Lines l_{a} and l_{b} are the reflections of $O A$ and $O B$ over the angle bisectors of $\angle S A L$ and $\angle S B K$, respectively. Show that l_{a}, l_{b} and $T D$ are concurrent.

