1st Round

1. From midnight of a certain day, the minute hand of a bewitched clock begins to misbehave in that it moves at same rate but in the opposite direction, while the hour and seconds hands behave normally. When next, after midnight, does the bewitched clock tell the correct time?
A) 06:00
B) $12: 00$
C) $15: 15$
D) $06: 30$
E) $00: 30$
2. How many ways can the letters in the word OLYMPIAD be rearranged so that all the vowels form a string of adjacent characters? (Example LYMPIAOD)
A) 4320
B) 40320
C) 43200
D) 4032
E) 432
3. How many 4-digit palindromes are divisible by 7? (A palindrome is a number of the form $a b b a$)
A) 7
B) 9
C) 18D) 19
E) 20
4. Given $A B C D E$ is a convex pentagon with $\angle A B C=\angle C D E=120^{\circ}, \angle A C E=90^{\circ}$ and $|A B|=|B C|=|C D|=|D E|=1$. Find $|\mathrm{AE}|$.

A) 2
B) $\sqrt{6}$
C) $2 \sqrt{2}$
D) $1+\sqrt{3}$
E) 3
5. Find the last digit of $1^{2^{3^{4}}}+2^{3^{4^{1}}}+3^{4^{1^{2}}}+4^{2^{2^{3}}}$.
A) 0
B) 2
C) 4
D) 6
E) 8
6. Given that $8!7!6!5!4!3!2!1!=2^{a} \cdot b$, where a and b are positive odd integers. What is the value of a ?
A) 7
B) 15
C) 23
D) 25
E) 45
7. Given that D is the midpoint of line segment $B C, E$ is the midpoint of line segment $A C$ and F is the midpoint of line segment $A D$, find the ratio of the area of triangle $A B C$ to triangle $D E F$.

A) 4
B) 6
C) 8
D) $\frac{1}{4}$
E) $\frac{1}{8}$
8. For which of the following pairs (x, y) does the inequality $12 x^{2}+6 y^{2} \geq 17 x y$ fail?
A) $(3,5)$
B) $(4,5)$
C) $(4,7)$
D) $(5,7)$
E) $(6,7)$
9. Let p be a prime greater than 7 , then $(2 p-2)!!(\bmod p)$ is? $(x!!$ is double factorial given by $x!!=x(x-2)(x-4) \ldots 3 \cdot 1$, if x is odd and $x!!=x(x-2)(x-4) \ldots 4 \cdot 2$, if x is even $)$
A) 0
B) 1
C) 2
D) $p-2$
E) $p-1$
10. 10 friends arrive at a hotel to spend the night, but the hotel has only 4 rooms free: two 2 -man rooms and two 3 -man rooms (Rooms are not identical). Given the 10 friends decide to spend the night in the given rooms, in how many ways can they book the rooms?
A) 25200
B) 6300
C) 144
D) 10 !
E) None of the above
11. In the figure, $|A B|=25,|C E|=9, \angle B A D=\angle D A E, A D \perp B C$ at D and $D E \perp A C$ at E. Find $|B C|$.

A) 25
B) 29
C) 30
D) 34
E) Cannot be found
12. Sum of two irrational numbers is 1 less than their product, and 8 less than their sum of squares. Find the larger of the two numbers.
A) $-1-\sqrt{2}$
B) 2
C) 3
D) $-1+\sqrt{2}$
E) $1+\sqrt{2}$
13. In an Olympiad class, half of the students love Geometry (G), half love Number Theory ($N T$) and half love Combinatorics (C). They all love Algebra. It is also known that 6 love C and $N T, 7$ love C and $G, 8$ love G and $N T$, and 14 love $N T$ but not C nor G. How many students love G but not $N T$ nor C ?
A) 12
B) 13
C) 14
D) 15
E) 16
14. An integer n is said to be k - lengthy if it can be written as the sum of k consecutive positive integers. For example, 6 is $3-$ lengthy as $6=1+2+3$. Suppose that there exists a 3 -digit positive integer, m, such that m is $k-$ lengthy and k is as large as possible, find the value of $m+k$.
A) 1079
B) 945
C) 990
D) 1011
E) 1034
15. Let $A D$ and $B C$ be common tangents to circles Ω_{1} and Ω_{2}. Let O_{1} and O_{2} be the centers of the Ω_{1} and Ω_{2} respectively. Given that $\left|O_{1} O_{2}\right|=15,\left|O_{1} A\right|=6,\left|O_{2} C\right|=3$ and $A D$ intersects $B C$ at P, find $|B P|$.

A) 5
B) 10
C) 7
D) 6
E) 8
16. Consider the sequence of positive integers defined by $a_{n+1}=n a_{n}$ for integers $n \geq 1$. If $a_{1} \leq 1000$, find the sum of all the possible number of zeroes a_{2022} can end with.
A) 1512
B) 1007
C) 2018
D) 2525
E) 503
17. A bag contains x blue, y red and z yellow identical balls. Gauss picks 3 balls at random with replacement. Given the first two balls are of different colours, what is the probability that the third ball is also of a different colour from the first two?
A) $\frac{1}{3}$
B) $\frac{x!y!z!}{(x+y+z)!}$
C) $\frac{x y+y z+z x}{9 x y z}$
D) $\frac{3}{(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}$ E) $\frac{6 x y z}{(x+y+z)^{3}}$
18. Let x, y and n be integers satisfying $n x+(n-1) y=1$ and $n>3$. Then, all of the following are possible except
A) $x=2 n-1$ B) $y=2 n$
$2 x+y=2 n-3$
E) $2 y+x=2 n-3$
19. Given that $f: R \rightarrow R$ is a non-constant linear function and there exist $a, b \in R$ such that $f(a-b)=a, f(a)=b$, $f(b)=a+b-1$ and $f(a+b)=1$. Find $f(1)$.
A) 1
B) -3
C) 5
D) 7
E) -9
20. $\angle B A C=\angle C B O=\frac{1}{2} \angle B O C=50^{\circ},|A B|=|B C|$. Which of the following is correct?

A) O is the circumcenter of $A B C$. B) $\angle A B C=60^{\circ}$
C) $B O \perp A C$
D) Area of $A B C$ is thrice that of $B O C$. E) $|A C|=|B O|+|O C|$.
21. John is playing a game with three standard dice. In a single move, he tosses the dices and records the number displayed by each of the dice. John wins the game if the three numbers can be placed side by side to form a 3-digit number divisible by 11. Suppose the probability that John wins is $\frac{p}{q}$ where the fraction $\frac{p}{q}$ is in lowest term. Find $p+q$.
A) 11
B) 5
C) 31 D$) 29$
E) 77
22. Let the polynomial $p(x)=5 x^{3}+3 x^{2}-10$ have roots a, b and c. What is the value of $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$?
A) $\frac{723}{250}$
B) $-\frac{723}{250}$
C) $\frac{27}{25}$
D) $-\frac{27}{25}$
E) Not possible to be determined
23. 3 positive integers greater than 200 are such that the H.C.F of the $1^{\text {st }}$ and $2^{\text {nd }}$ is 143 , H.C.F of the $2^{\text {nd }}$ and $3^{\text {rd }}$ is 34 , and the H.C.F of the $3^{\text {rd }}$ and $1^{\text {st }}$ is 1 . Given the L.C.M of the 3 positive integers is 578578, find the smallest of the 3 positive integers. (H.C.F also known as G.C.D is the Highest Common Factor or Greatest Common Divisor, and L.C.M is the Lowest Common Multiple)
A) 4862
B) 578
C) 286
D) 338
E) 442
24. Let S denote the set of positive multiples of 12,15 or 20 that are less than 2022. Find the sum of all the elements of S.
A) 409047
B) 403
C) 341727
D) 337
E) 289020
25. Given $P_{1} P_{2} P_{3} \ldots P_{2022}$ is a convex polygon, what is the value of the following summation?

$$
\sum_{i=1}^{i=2022} \angle P_{i} P_{i+5} P_{i+10}
$$

where $P_{2023}=P_{1}, P_{2024}=P_{2}, P_{2025}=P_{3}$ and so on.
A)1006 • 360
B) $2012 \cdot 360$
C) $2013 \cdot 180$
D)
$2017 \cdot 360 \quad$ E) Not enough information.

